Что такое биометрия в биологии. Развитие биометрии

Министерство образования и науки Республики Казахстан

При проведении зоотехнических экспериментов, ветеринарных исследований, научных наблюдений в научно-исследовательских институтах, на опытных станциях, на фермах совхозов и колхозов возникает необходимость в выявлении таких закономерностей, которые обычно скрыты случайной формой своего проявления. Определение надежности научных диагнозов и прогнозов, выдвижение научных рекомендаций о массовом применении новых методов кормления, разведения, лечения и репродуктивного использования сельскохозяйственных животных требует установления достоверности результатов тех исследований, на основе которых делаются соответствующие выводы и даются рекомендации.

Генетический анализ, как и большинство теоретических и прикладных экспериментальных зоотехнических и ветеринарных работ, включает применение математико-статистических методов. О степени развития любой науки можно судить по тому, насколько она применяет методы математики (по К. Марксу).

Использование достижения современной биометрии - науки о способах применения принципов и методов теории вероятности и математической статистики в биологии вообще и в зоотехнии и ветеринарии в частности - позволяет выделять новые закономерности явлений жизни и событий животного мира. С помощью методов математического анализа можно установить, насколько точно достоверно данные, полученные на отдельной не большой группе животных (выборке), отражают особенности всех животных (генеральной совокупности).

Методами биометрического анализа пользуются как научные работники и специалисты животноводства, так и преподаватели, аспиранты и студенты вузов.

В настоящее время имеется много изданий фундаментальных пособий по биометрии, однако им присуща теоретическая направленность, позиционно - математическое изложение, что создает трудности студентам самостоятельно освоить и применять биометрические методы при обработке своих исследований.

Ф. Гальтон сформулировал закон регрессии , это положение нашло отражение в современной генетике под названием коэффициента наследственной детерминации аддитивного генотипа-потомка, имеющего предков в свободно скрещивающейся популяции.

Философские концепции К. Пирсона были откровенно идеалистическими, однако открытие им в области математической статистики среднее квадратичное отклонение, коэффициент вариации, метод хи-квадрат, коэффициенты прямолинейной и криволинейной корреляции нашли широкое применение как генетико-селекционных исследованиях, так и в других областях науки и техники.

Большую роль в развитии теории вероятности сыграли классические исследования великих русских математиков и.

Датский ученый изложил методические основы генетического анализа: чистые линии, математическая обработка и искусственное скрещивание.

Г. Харди (Англия) и А. Вайнберг (Германия) заложили основу для современной популяционной генетики.

В. Госсет (псевдоним Стьюдент) обосновал теорию малых выборок.

Агроном, работавший на Ротамстедской опытной станции (Великобритания), предложил метод дисперсионного анализа .

предложил ряд математических формул, применяемых в генетическом анализе, в частности, формулу выражения закона Менделя.

Велики заслуги в становлении математических методов генетического анализа.

В последнее время в нашей стране и за рубежом выпущен ряд пособий и учебников по биометрии: «Биологическая статистика» и «Введение в статистическую генетику», «Статистические методы в применении к исследованиям в сельском хозяйстве и биологии», «Биометрия», «Руководство по биометрии для зоотехников», «Биометрия в животноводстве», «Введение в генетику количественных признаков», «Биометрия» и др.

1.2 Основные понятия теории вероятности

Теория вероятности имеет дело с изучением закономерностей случайных событий. Для понимания статистического подхода к изучаемым явлениям нужно ознакомиться с некоторыми понятиями и методами теории вероятности.

Опыт - процесс, в ходе которого могут осуществляться (или не осуществляться) события, которые можно зафиксировать при наблюдениях. Известные, существующие объективно или созданные экспериментатором явления, влияющие на ход опыта, называются условиями. События, которые могут произойти в данном опыте, называются исходами. Условия данного опыта вместе с множеством исходов составляют испытание.

Событие, которое в определенных условиях происходит обязательно, называется достоверным; которое не может произойти – невозможным; которое может возникнуть, но может и не возникнуть - случайным.

Вероятность - это числовая характеристика степени возможности появления какого - либо события, которое может повториться неограниченное число раз.

Вероятность достоверного события полагается равной единице, невозможного - нулю.

Если в опыте появление одного события исключает появление другого, то эти события называются несовместимыми, в противном случае такие события называются совместимыми.

Случайность есть форма проявления необходимости и в то же время дополнение необходимости.

Диалектико-материалистические представления об объективной случайности как форме необходимости дает возможность правильно оценивать многочисленные факты статистических закономерностей в явлениях природы и в том числе в явлениях изменчивости и наследственности.

Статистические закономерности не дают возможности предсказать появление отдельных событий, так как отдельное событие имеет только свою вероятность появления. Главная особенность статистических закономерностей заключается в том, что они помогают предвидеть свойства больших совокупностей и предсказать в них частоту определенных событий.

В основе всех статистических методов, которые широко используются в статистической генетике, лежит теория вероятности. Некоторые специфические для статистической генетики методы, составляющие техническую основу, рассматривается в данной работе.

1.3 Статистическая совокупность, ее свойства, терминология и символика

Следует знать, что биометрия - это математическая статистика в приложении к явлениям живой природы. С помощью методов вариационной статистики она изучает их изменчивость и наследственность.

Объектом исследований биометрии являются животные, у которых изучают закономерности изменения и проявления признаков.

Закономерности изменчивости и наследственности устанавливаются на массовом материале, полученном на многочисленных экземплярах.

Любое количество отдельных объектов, отличаются друг от друга и в тоже время сходных по многим признакам, составляет совокупность, которую разделяют на генеральную и выборочную.

Генеральную совокупность образуют особи, которые интересуют исследования с точки зрения особенностей изменчивости и наследственности их признаков (например, совокупность всех животных какого-то стада, породы в целом или данного региона). Но, как правило, обследовать всех животных, а тем более провести на них какой - либо эксперимент, не всегда представляется возможным, так как это требует больших затрат средств и времени. Поэтому изучают (подвергают эксперименту) только часть особей генеральной совокупности.

Выборочная совокупность (выборка) – это группа особей, выделенная методом случайного отбора из генеральной совокупности для проведения на ней исследований. Выборка может с определенной степенью достоверности характеризовать всю генеральную совокупность. Чтобы выборочная совокупность более плотно отражала генеральную, необходимо учитывать такие основы положения:

Выборка должна быть вполне представительной, т. е. иметь определенное количество наиболее типичных особей генеральной совокупности;

Выборка должна быть объективной, т. е. сформированной по принципу случайного отбора без субъективных влияний на ее состав;

выборка должна быть качественно однородной (выделенные для опыта группы должны быть аналогами по видовым, возрастным, физиологическим и другим факторам).

По объему выборки делятся на малочисленные, содержащие до 30 особей, и многочисленные.

Числовые значения признака отдельных особей называют вариантами (от латинского Varians). Изменение признаков и свойств живых существ называют варьированием. Совокупность вариант, полученных при наблюдении (исследовании) без определенной систематики называют первичным (сырым) рядом. Расстановка вариант в порядке возрастания (или убывания) называется ранжированием (ранжированный ряд). Группа чисел, сгруппированная в классы в зависимости от величины изучаемого признака, называется вариационным рядом.

Существующие между биологическими признаками связи, при которых определенному значению одного признака соответствует несколько значений другого признака, варьирующей около своей средней величины, называется корреляцией.

Биологические признаки, если они выражаются при помощи счета или меры, приобретают значение математических величин: средняя арифметическая, средняя квадратическая, коэффициент изменчивости, коэффициент корреляции и ряд других. Результаты измерений признаков, как и их особенностей варьирования, взаимосвязи и наследуемости обозначается в математических работах разными символами (таблица 1).

Таблица 1

Символы

Название символа

Принятые в данной работе

В других работах по руководству по биометрии

Дата, варианта (числовое значение признака)

Число особей генеральной совокупности

Число особей выборки

Продолжение таблицы 1

Максимальное и минимальное значение признака

Лимит, размах изменчивости

Величина классового промежутка

Частота (число вариант в классе)

Числовое значение модального класса

Отклонение классов от модального (условного, среднего)

Поправка к условной средней

Средняя арифметическая генеральной совокупности

Средняя арифметическая выборки

∑(V - M)2, S, G, SQ

Дисперсия (сумма квадратов центральных отклонений)

Сумма квадратов условных отклонений

Сигма (среднее квадратичное отклонение)

Коэффициент вариации

Дисперсия - общая, факториальная, остаточная

Статистическая ошибка (ошибка репрезентативности)

Разность между двумя средними

Показатель достоверности

Показатель достоверности разности

Показатель достоверности Фишера (при дисперсионном анализе)

Путь технологии, вышедшей за рамки использования в силовых структурах и заменившей графические и числовые пароли.

В закладки

Первыми биометрию использовали правоохранительные органы и службы повышенной безопасности. Сейчас биометрические системы встречаются почти во всех современных устройствах: автомобилях, ноутбуках, смартфонах.

Биометрия - это измеримые анатомические, физиологические и поведенческие характеристики, которые используются для идентификации личности. Самый распространённый метод - распознавание по отпечаткам пальцев. Но есть и другие способы - ДНК, радужная оболочка глаза, голос, ладони и черты лица.

Сейчас активно развивается нормативно-техническая и правовая база биометрических технологий. Государство инициирует формирование единых стандартов, чтобы обеспечить взаимодействие автономных систем. Создаются комитеты и департаменты по биометрии. Несмотря на многообразие биометрических методов, в основном используются только три направления: распознавание по отпечатку пальца, лицу и радужке глаза.

Развитие компьютерных технологий позволяет использовать биометрию во многих сферах деятельности: контроль доступа в помещения и к устройствам, подтверждение финансовых операций, обеспечение безопасности в аэропортах, идентификация в школе и больницах, поиск преступников.

История биометрии началась три тысячи лет назад. Артефакты, найденные в Новой Шотландии, Вавилоне и Китае, доказывают, что отпечатки рук и пальцев использовали уже в древние времена для деловых операций и доказательств преступлений.

И только спустя столетия люди возобновили изучение использования отпечатков пальцев и других показателей как средства идентификации.

Первые, кто использовал биометрию в современном мире, - полицейские. Примерно до середины 1800-х годов сотрудникам правоохранительных органов приходилось на глаз и по памяти идентифицировать ранее арестованных преступников. Фотография человека облегчала задачу, но не могла служить доказательством вины.

К 1920-м годам ФБР открыло первый департамент идентификации, создав центральное хранилище данных об уголовной идентификации для правоохранительных органов США. В 1980-х годах правительство США спонсировало создание автоматизированных систем идентификации отпечатков пальцев, которые стали центральными в работе полиции и других правоохранительных органов во всём мире.

Как и отпечаток пальца, неизменной с возрастом остаётся и радужная оболочка глаза. Её использование в биометрии позволяет применять бесконтактную идентификацию.

Не менее нужная разновидность биометрии - распознавание лиц. Изначально эту технологию использовали, чтобы обеспечить безопасность в местах массового скопления людей.

В торговых центрах это помогает предотвратить преступность и насилие. В аэропортах повышается удобство и безопасность. Производители устройств используют технологию распознавания лиц, чтобы предоставить пользователям новый уровень биометрической безопасности.

Сложнее, чем сканирование отпечатков пальцев, лица или радужки глаза, только идентификация голосового отпечатка. Уникальные компоненты делают практически невозможной подмену голоса. История голосовых биометрических данных началась не так давно. Первые способы идентификации в режиме реального времени появились в конце 1990-х годов.

1665 год

Марчелло Мальфиги публикует открытие об уникальности отпечатков пальцев.

1858 год

Индийский госслужащий Уильям Гершель фиксирует отпечатки пальцев каждого работника на обратной стороне трудового контракта. Таким образом Гершель отличает сотрудников от других людей, которые могут претендовать на роль служащих, в день выплаты зарплаты.

1870 год

Французский юрист Альфонс Бертильонаж разрабатывает систему бертильонаж - метод идентификации преступников по антропометрическим данным. Метод основан на подробных отчётах об измерениях тела, физических описаниях и фотографиях. Системой в течение 30 лет пользовались во всём мире до тех пор, пока полицейские не поняли, что некоторые люди могут обладать одинаковыми параметрами.

1880 год

Шотландский хирург Генри Фолдс публикует статью о пользе отпечатков пальцев для идентификации.

1892 год

Аргентинский полицейский Хуан Вученич начинает собирать и каталогизировать отпечатки пальцев. А также использует отпечатки, чтобы доказать окончательную вину Франциски Рохас в убийстве соседа. Полицейский устанавливает, что её отпечаток идентичен частичному кровавому следу на месте преступления.

В этот же год Фрэнсис Гальтон пишет подробное исследование отпечатков пальцев, в котором он представляет новую систему классификации.

1896 год

Генеральный инспектор Бенгальской полиции Эдвард Генри, заинтересовавшийся системой Гальтона, собирает чемодан фотографий отпечатков пальцев и совершенствует классификацию Гальтона. Генри делит узоры на пальцах на пять основных: простые и сложные дуги, петли, направленные в сторону большого пальца или мизинца, и завихрения.

Главная идея Генри - кодировать узоры числовыми формулами. Виды обозначались буквами A, T, R, U, W, а подвиды - цифрами. Метод Генри стал предшественником системы классификации, которая в течение долгих лет использовать ФБР и другими правоохранительными структурами.

1903 год

Система Бертильона «ломается». Двое мужчин, впоследствии оказавшиеся близнецами, приговорены к исправительным работам в США. Установлено, что они имеют почти одинаковые измерения по бертильонажу. Но позже историю оспаривают, потому что она использовалась, чтобы доказать несовершенство бертильонажа.

1936 год

Офтальмолог Фрэнк Берч предложил использовать радужную оболочку глаза для распознавания личности.

1960 год

Шведский профессор Гуннар Фант публикует модель, описывающую физиологические компоненты производства акустической речи. Результаты основаны на анализе рентгеновских лучей индивидуумов, издающих определённые звуки.

1964 год

Вудро Бледсоу, Хелен Чан Вольф и Чарльз Биссон в рамках коллективного исследования по распознаванию образов разрабатывают первоначальную технологию. Однако Бледсо покидает исследование, работу над которым продолжает Питер Харт в Стэнфордском исследовательском институте.

1965 год

Вудро Бледсоу по контракту правительства США разрабатывает первую полуавтоматическую систему распознавания лиц.

Североамериканская авиация разрабатывает первую систему распознавания подписей.

1968 год

Компьютер последовательно превосходит людей в идентификации человеческих лиц из базы данных, содержащей две тысячи фотографий.

1969 год

ФБР приступает к разработке системы автоматизации процесса идентификации отпечатков пальцев, которая становится первоочерёдной и занимает большинство человеческих ресурсов.

ФБР заключает контракт с Национальным институтом стандартов и технологий (NIST) на изучение процесса автоматизации идентификации человека по отпечатку пальцев. NIST выделяет две основные проблемы: первая - сканирование отпечатков пальцев и определение отличительных признаков, вторая - сравнение и сопоставление черт.

1970 год

Моделируются поведенческие компоненты речи. Доктор Джозеф Перкелл расширяет первоначальную модель, разработанную в 1960 году. Он включает в неё язык и челюсть. Модель обеспечивает более подробное понимание сложных поведенческих и биологических компонентов речи.

1971 год

Исследователи Голдштейн, Хармон и Леск публикуют статью «Идентификация человеческого лица », в которой используют 22 относительных маркера, например, цвет волос и толщина губ, для автоматического распознавания лиц. Исследование легло в основу для дальнейшего изучения компьютерной идентификации лиц.

1974 год

Появляются первые коммерческие биометрические устройства распознавания ладони. Системы реализованы для трёх основных целей: контроль физического доступа, фиксирование времени и отслеживание посещаемости, идентификация людей.

1975 год

ФБР финансирует разработку датчиков и сенсоров для сканирования узоров отпечатков пальцев, чтобы сократить стоимость на хранение цифровой информации. Ранние сенсоры используют ёмкостные методы для сбора характеристик отпечатков пальцев.

В течение следующих десятилетий NIST сосредотачивается на разработке автоматических методов оцифровывания отпечатков и сжатия изображений, классификации, извлечении и сопоставлении деталей. В результате исследований NIST появляется M40 - первый алгоритм компьютерного сопоставления отпечатков, используемый в ФБР.

1976 год

Американский производитель электродеталей Texas Instruments разрабатывает прототип распознавания речи, который тестируют военно-воздушные силы США и некоммерческая компания Mitre Corporation. Последняя занимается проектированием, исследованием и разработкой систем, а также поддержкой информационных технологий правительства США.

1977 год

Компания Veripen получила патент «Персональный идентификационный аппарат», который захватывает динамические характеристики подписи человека. Разработка системы привела к тестированию автоматической проверки почерка, выполняемой Mitre Corporation, для отдела электронных систем ВВС США.

1984 год

Армия США начинает использовать распознавание ладоней в банковской сфере.

1985 год

Офтальмологи Леонардо Флом и Аран Сафир предполагают, что не существует двух одинаковых радужных оболочек.

1986 год

NIST совместно с Американским национальным институтом стандартов (ANSI) создают стандарт для обмена данными об узорах отпечатков пальцев ANSI/NBS-I CST 1-1986. Это первая версия существующих стандартов, которые сейчас используют правоохранительные органы во всём мире.

Флом и Сафир получают патент на использование радужной оболочки глаза для идентификации. Флом обращается к доктору Джону Догману с просьбой разработать алгоритм для идентификации человека по радужке.

1987 год

NIST формирует группу для изучения и развития использования методов обработки речи.

1988 год

Подразделение «Лейквуд» департамента шерифа округа Лос-Анджелес использует первую полуавтоматическую систему распознавания лиц по базе данных оцифрованных копий.

В тот же год Кирби и Сирович применяют анализ основных компонентов - стандартные методы линейной алгебры - к проблеме распознавания лица. Технология получает название Eigenface.

1991 год

Мэтью Турк и Алекс Пентланд находят, что остаточную ошибку Eigenface можно использовать для нахождения граней в изображениях. В результате этого открытия стало возможным надёжное автоматическое распознавание лиц в реальном времени.

1992 год

АНБ создаёт Биометрический консорциум и проводит первое заседание в октябре 1992 года. Первоначально участие в Консорциуме ограничено государственными учреждениями. Однако вскоре организация расширяет членство: включает частные и научные сообщества, разрабатывает многочисленные рабочие группы для начала и расширения усилий по тестированию, разработке стандартов, функциональной совместимости и правительственному сотрудничеству.

С началом биометрической деятельности в начале 2000-х годов деятельность рабочих групп интегрируется в другие организации, например, в INCITS, ISO и Национальный совет по науке и технике США, чтобы расширить и ускорить их деятельность. Консорциум становится площадкой для дискуссий между правительством, промышленностью и академическими сообществами.

1993 год

Агентство перспективных исследований в области обороны и Управление программы развития Министерства обороны США финансируют программу FacE REcognition Technology (FERET). Цель поощрения - разработка алгоритмов распознавания лиц и технологий.

1994 год

В результате конкурса по созданию интегрированной автоматизированной системы идентификации отпечатков (IAFIS) исследуются три основные проблемы: получение цифрового отпечатка пальцев, извлечение характеристики локальной борозды и совпадение характеристик борозд. Компания Lockheed Martin выиграла конкурс по созданию IAFIS для ФБР.

Считается, что первую автоматизированную систему идентификации отпечатков пальцев (AFIS), созданную для поддержки печати отпечатков, построила венгерская компания RECOWARE. В 1997 году технологию идентификации ладоней и отпечатков пальцев, встроенную в RECOderm, покупает Lockheed Martin Information Systems.

В тот же год на основе биометрии создаётся служба ускоренного обслуживания пассажиро-иммиграционной и натуралистической службы (INSPASS). Она помогала путешественникам обходить иммиграционные линии в выбранных аэропортах по всей территории США до тех пор, пока не прекратила существование в конце 2004 года.

Джон Даунгман разрабатывает и патентует первые алгоритмы компьютерной идентификации образцов радужки. Патент получает название lriScan. До сих пор алгоритмы Даугмана - основа публичных применений технологии.

1995 год

Агентство по защите ядерных вооружений и iriScan создают совместный проект, который привёл к появлению первого коммерческого продукта из сферы распознавания радужной оболочки глаза.

1996 год

На Олимпийских играх в Атланте внедряют системы доступа по ладони, чтобы контролировать и защищать физический доступ к Олимпийской деревне. Система находит информацию среди данных более 65 тысяч человек. В течение 28 дней обработано более одного миллиона транзакций.

При финансировании АНБ NIST начинает ежегодную оценку узнаваемости спикеров NIST для дальнейшего продвижения сообщества по признанию ораторов.

1997 год

IAFIS начинает работу. В ходе разработки системы учёные рассмотрели вопросы, связанные с обменом информацией между автономными системами, а также изучили внедрение национальной системы для определения отпечатков пальцев. IAFIS используют для проверки криминального прошлого людей и идентификации скрытых отпечатков, обнаруженных на местах преступления.

Кристоф фон дер Малсбург и команда аспирантов из Университета Бохума в Германии разработали систему ZN-Face, которая тогда была самой надёжной благодаря способности распознавать лица на некачественных фотографиях.

Технологию финансировала исследовательская лаборатория армии США. Однако использовали её крупные международные аэропорты, банки и правительственные учреждения.

При поддержке АНБ был опубликован первый коммерческий общий биометрический стандарт - API аутентификации человека (HA-API). Цель проекта - облегчение интеграции и обеспечение взаимозаменяемости и независимости поставщиков. Это стало прорывом работающих вместе поставщиков биометрических технологий.

1998 год

ФБР запускает криминалистическую базу данных ДНК - Комбинированную систему индексов ДНК (CODIS). Система обеспечивает цифровое хранение и поиск ДНК-маркеров для правоохранительных органов.

1999 год

Техническая консультативная группа Международной организации гражданской авиации (ИКАО) по машиносчитываемым проездным документам (TAG или MRTD) приступила к исследованию совместимости биометрических и машиносчитываемых проездных документов. Цели исследования - создание международных стандартов для мультисервисной передачи данных.

2000 год

Несколько правительственных агентств США спонсируют тестирование поставщиков распознавания лиц (FRVT). Тесты проводит NIST. Это стало первой открытой крупномасштабной оценкой нескольких коммерчески доступных биометрических систем.

Дополнительные оценки прошли в 2003 и 2006 годах. Задачей проекта было предоставить правоохранительным органам и правительству США информацию, необходимую для определения наилучших способов развёртывания технологии распознавания лиц.

Учёные публикуют первый исследовательский документ, в котором рассказывают об использовании образцов сосудов для распознавания людей. В статье описывают первую коммерческую технологию, которая использует изображение сосудов на кисти человека для идентификации.

В тот же год Университет Западной Вирджинии и ФБР ввели программу бакалавриата в биометрических системах.

Январь 2001 года

Систему распознавания лиц устанавливают на Супербоуле, который проходит в Тампе, штат Флорида, чтобы идентифицировать на стадионе разыскиваемых людей. Система не нашла их, но ошибочно идентифицировала дюжину невинных болельщиков. СМИ обеспокоены нарушением конфиденциальности людей при использовании биометрии.

11 сентября 2001 года

Серия террористических актов, организованная террористической организацией «Аль-Каида» возобновила научный интерес к технологии. В первую очередь это коснулось транспортных систем и органов, обеспечивающих международные перемещение людей, например, таможенные и миграционные службы.

Идентификации личности при проверке документов оказалось недостаточно, тогда как биометрические показатели гарантируют безошибочное распознавание людей.

Ноябрь 2001 года

Создаётся технический комитет M1 для ускоренной разработки стандартов по использованию биометрии в США и в международных стандартизационных комиссиях.

2002 год

Международная организация по стандартизации (ISO) и Международная электротехническая комиссия (IEC) учредили подкомитет ISO/IEC JTC1 для поддержки стандартизации биометрических технологий. Подкомитет разрабатывает стандарты для обеспечения интеграции и обмена данными между автономными приложениями и системами.

2003 год

Международная организация гражданской авиации (ICAO) принимает глобальный согласованный план интеграции биометрической идентификационной информации в паспорта и другие машиночитаемые документы (МСДП). Распознавание лица выбирают как глобальную интероперабельную биометрическую модель для компьютеризированного подтверждения личности.

В то же год Европейская комиссия поддерживает создание Европейского биометрического форума. Задача проекта - сделать Евросоюз мировым лидером в области биометрии с помощью устранения барьеров на пути принятия решений и фрагментации на рынке. Форум также выступает движущей силой для координации, поддержки и укрепления национальных органов.

2004 год

Министерство обороны США реализует автоматизированную систему биометрической идентификации (ABIS). Её внедряют, чтобы улучшить способность правительства США отслеживать и идентифицировать национальные угрозы безопасности.

2005 год

Истекает патент США на концепцию распознавания радужки глаза. Благодаря этому открываются маркетинговые возможности для компаний, которые разработали свои алгоритмы распознавания радужки.

2010 год

АНБ использует биометрические данные, чтобы идентифицировать террористов. В том числе использует отпечатки пальцев из мест, связанных с терактами 11 сентября.

2011 год

Правительство Панамы, сотрудничая с секретарём национальной безопасности США Джанет Наполитано, инициировало экспериментальную программу платформы FaceFirst по распознаванию лиц, чтобы сократить незаконную деятельность в аэропорту Токумен в Панаме.

Он известен как центр контрабанды наркотиков и организованной преступности. В результате система помогла задержать несколько подозреваемых Интерпола.

Идентификация лица всё чаще используется для судебной экспертизы со стороны сотрудников правоохранительных органов и военных. Часто это самый эффективный способ идентифицировать мёртвые тела.

Технологию распознавания лиц и ДНК использовали, чтобы подтвердить личность Усамы бен Ладена - основателя террористической организации «Аль-Каида» - после того, как его убили в результате американского рейда.

2013 год

Apple внедряет в новые смартфоны функцию распознавания отпечатков пальцев Touch ID.

2016 год

Samsung презентует устройство со сканером радужной оболочки глаза, чтобы повысить уровень безопасности доступа к устройству.

MasterCard, Visa и другие финансовые организации включают биометрическую аутентификацию платежей.

2017 год

Розничная торговля активно внедряет технологии распознавания лиц. И становится самым быстрорастущим сектором по использованию этой технологии.

Кроме этого, Apple представляет iPhone X с технологией распознавания лица Face ID.

Сейчас

Многие читатели Хабра, вероятно, уже знакомы с биометрическими технологиями. Они сейчас распространены повсеместно. В общем смысле биометрия – это система распознавания людей по одной либо нескольким физическим (или поведенческим) характеристикам. В сфере информационных технологий биометрические данные используются в качестве одной из форм управления идентификаторами доступа и контроля доступа. Обычно режим работы биометрических систем сводится к двум основным типам.

Первый называется верификацией, это сравнение результата теста с биометрическим шаблоном. Этот вариант помогает проверить, тот ли это человек, за кого он себя выдает. Верификация может осуществляться различными способами, включая смарт-карту, имя пользователя или же его номер. Второй режим – это идентификация. После получения определенного образца система сверяется с базой биометрических данных для определения личности. Здесь есть один важный момент – для этого режима работы биометрический образец должен быть в базе данных, а сравнение осуществляться по принципу «один со многими». В целом, у биометрических технологий огромный потенциал, который пока не реализован в полной мере. В каком состоянии сегодня находятся биометрические технологии в России и мире?

В ряде случаев их развитие нельзя еще признать удовлетворительным. Пока что эта сфера активно развивается, хотя кое-какие результаты уже есть (об этом – ниже). В некоторых случаях биометрию считают не слишком надежным способом идентификации или верификации. Так, в США полицейское управление города Тампа даже деинсталлировало программное обеспечение распознавания лиц, считая его не слишком надежным. Но там речь шла о внедрении устаревших методов биометрии, которые не всегда показывают себя с лучшей стороны.

Тем не менее, современные технологии биометрии становятся все более точными и надежными. Многие компании и научные организации занимаются исследованиями и разработками в этой сфере. Причем приоритет с течением времени сместился на бесконтактные методы биометрического распознавания. Биометрия используется во многих сферах, включая банковскую деятельность, системы охраны и контроля доступа, системы визового контроля, полицейские системы идентификации преступников, сбор статистики посетителей и много чего еще. Пока что около половины биометрического рынка занимают системы распознавания по отпечаткам пальцев. Но ситуация постепенно меняется, разработчики понимают, что дактилоскопия – не самый надежный способ идентифицировать личность (в «Разрушителях легенд» как-то даже показывали способ открыть дактилоскопический замок при помощи распечатанных на принтере отпечатков пальцев), поэтому постепенно становятся все более популярными новые технологии биометрии.

Биометрия: масштабы

В целом, можно сказать, что биометрия стала неотъемлемой частью жизни людей. В некоторых странах, например, без биометрических данных нельзя получить загранпаспорт и визу. Правительственные организации различных стран считают, что биометрия – один из самых эффективных способов идентификации беженцев и тех, кто нелегально пересекает границу.

Сейчас есть немало проектов, в основу которых положены биометрические технологии. Пожалуй, один из наиболее масштабных – это проект AADHAAR, реализуемый в Индии. Он представляет собой биометрическую идентификационную систему, которая содержит данные более чем миллиарда человек. В базе – около 10 млрд шаблонов отпечатков пальцев, два млрд шаблонов радужки глаза и миллиард фотографий. Нечто похожее было показано в фантастическом фильме «Я – начало» (I origins). Впрочем, идентификация по радужке глаза – вполне реальная технология, которая становится все популярнее.

Запись в AADHAAR имеют возможность получить все резиденты Индии, это идентификационный номер, который привязан к биометрическим данным пользователей. Используется он в финансовых операциях, при работе с различными государственными и частными сервисами. К AADHAAR привязан и облачный сервис для хранения сканированных документов.

Конечно, не только Индия вводит биометрическую идентификацию. Другие государства тоже этим занимаются. Да и не только государства, но и частные компании. По оценке аналитического агентства J"son & Partners Consulting, объем мирового рынка биометрических систем достигнет объема в $40 млрд к 2022 году. Выводы аналитиков основаны на показателях выручки ключевых игроков в зависимости от сегментов, с учетом оборудования, программного обеспечения и интеграции.

Другое аналитическое агентство, Acuity Research, оценивает рост количества биометрических электронных документов e-ID до 749 млн к 2018 году. А всего, по мнению специалистов агентства, в 2018 году в мире будет насчитываться около 3,5 млрд. электронных документов. Уже сейчас более половины стран-участниц ООН выдают биометрические паспорта. Примером реализации программ перехода на биометрические электронные документы можно назвать правительственные и частные контракты Канады, США, Белоруссии, Украины, Молдавии, Литвы, Венгрии, Бангладеш, Сенегала и других стран.

А что в России?

В России биометрические технологии развиваются довольно быстро, более активно, чем во многих странах. Например, крупнейшие банки РФ приступили в этом году к тестированию биометрических систем идентификации клиентов. Создает свою базу биометрических данных ЦБ, Минкомсвязи и Росфинмониторинг, эта система достигнет стадии тестирования уже в этом году.

По словам зампреда ЦБ Ольги Скоробогатовой, пилотный проект позволит стать клиентом любого банка удаленно. Для этого достаточно будет единожды пройти процедуру биометрической регистрации в любом участвующем в проекте кредитном учреждении.

«Биометрия связана с очень волнующей темой. Это идентификация, удаленная идентификация, создание единой базы данных о физических лицах, я больше говорю о физических лицах, которая дала бы возможность любому банку и любой организации не заставлять клиентов приходить ногами для заполнения большого перечня документов», – цитирует Скоробогатову РИА.

От этого эксперимента до создания национальной биометрической базы данных останется буквально один шаг.

В банковском секторе стараются внедрять системы идентификации клиентов по голосу, фотографии, отпечаткам пальцев. К примеру, ВТБ24 уже опробовал в работе биометрическую идентификацию в рамках интернет-банкинга. В процессе входа в приложение онлайн-банка клиентам предложили предоставить свою фотографию и образец голоса. При помощи этих данных и планируется проводить идентификацию. После подтверждения личности пользователя все операции совершаются без дополнительного подтверждения. Большой интерес к биометрии проявляет и Сбербанк, который уже аккредитовал RecFaces (заявка Comlogic) как одного из своих партнеров по данному направлению.

Схожие технологии используются в Промсвязьбанке и «Хоум Кредите», «Тинькофф Банке» и ряде других организаций. Что касается единой базы биометрических данных, то над ее созданием одновременно работают ЦБ, Минкомсвязи и Росфинмониторинг. Реализация этого проекта может занять несколько лет. Общая база биометрических данных, по мнению экспертов, окажется полезной для финансового и юридического секторов, сферы госуслуг, общественной безопасности, медицины и не только.

Цифровой биометрический профиль от RecFaces

Говоря о биометрии в России, нельзя не сказать о и нашей разработке – информационной платформе мультимодальной идентификации, получивший название Id-Me.

Обычно компании, которые внедряют у себя биометрию, должны выбрать несколько поставщиков, вложить немалые средства в создание центральной вычислительной инфраструктуры, ее обслуживание, разного рода лицензии и оборудование.

Но дело не только во вложенных средствах и трудоёмкости процесса. Каждый алгоритм, который сейчас предлагается на рынке, имеет ряд своих особенностей и преимуществ. Мы в RecFaces сосредоточились именно на создании полноценной комплексной платформы, использующей лучшие мировые достижения в области биометрии. Имея возможность изучать алгоритмы и сравнивать их, мы отбираем те решения, которые показывают максимальную эффективность.

Так, к примеру, технологии биометрической идентификации по математической модели лица лицензированы у японской компании Toshiba. 3D-идентификация осуществляется с использованием решений Artec ID и корпорации Intel. Нет сомнений в том, что и для готовящихся к внедрению в платформу Id-Me модулей идентификации по рисунку радужной оболочки глаза, отпечаткам пальцев, рисунку вен ладоней, RecFaces выберет самые современные и перспективные технические решения. Клиентам же останется использовать «магию» Id-Me для решения своих прикладных задач.

Для внешнего наблюдателя работает Id-Me достаточно просто. Один из основных компонентов системы – Id-Box (модуль захвата). Он представляет собой небольшое «умное» устройство идентификации на базе PC-платформы в компактном корпусе. Именно этот элемент отвечает за распознавание лиц и, в перспективе, других типов биометрических данных. Он подключается к камере наблюдения и другим сенсорам. Система получает от них массив данных, который здесь же преобразуется в специализированный индекс, математическую модель, которая и отправляется в облако для сравнения с хранящимся там эталоном. За счет работы с индексами система не требовательна к «ширине» интернет-канала.

Это универсальная система, которая эффективно работает с различными типами изображений, умеет использовать информацию с камеры наблюдения. Id-Box при необходимости может собирать статистику количества посетителей, включая возраст, пол и эмоциональное состояние. Если случается сбой – переживать не нужно, внутри бокса есть собственный жесткий диск большого объема, где хранятся все важные данные. При внезапном отключении сети вся информация сохранится, а система продолжит работу.

Данные, собранные Id-box, отправляются в облако, где система сравнивает текущий индекс со всеми предыдущими версиями. Если есть совпадение, то есть система распознала зарегистрированное лицо, клиент получает оповещение. Сервис совместим с основными базовыми платформами, включая web-интерфейс, мобильные клиенты iOS, Android, Windows.

Вся система надежно защищена благодаря наличию зашифрованного соединения. Кроме того, работает Firewall, предусмотрен криптошлюз с криптомаршрутизаторами. Используется электронная цифровая подпись, антивирусное ПО и средства обнаружения вторжений сертифицированные ФСТЭК.

Сфера применения Id-Me

Биометрическая платформа Id-Me от RecFaces разработана таким образом, чтобы оказаться максимально полезной банкам, аэропортам, ритейлу, гостиничному бизнесу, спортивным организациям, госструктурам.

Банки могут использовать биометрию для повышения безопасности. Здесь можно привести как пример возможный случай попытки мошенника снять деньги с чужой карты. Камера банкомата, подключенная к Id-Me, идентифицирует лицо человека, пытающегося это сделать. Если эта информация не совпадет с той, что содержится в базе, снятие средств почти мгновенно блокируется. Для использования такого метода защиты даже не потребуется оснащать банкомат дополнительным оборудованием.

Аналогичным образом банк может защитить свой кредитный отдел. Мошенник, который пытается осуществить финансовую операцию под чужим именем, не сможет этого сделать, если за ним наблюдает подключенная к сервису Id-Me камера.

Плюс ко всему, авторизоваться могут и сотрудники банка, что необходимо при выполнении каких-либо критически важных задач. Такая функция может пригодиться во многих сфер. Id-Me, например, позволяет автоматизировать учет рабочего времени персонала.

Поскольку Id-Me умеет анализировать видеопоток с камер наблюдения и отдельные изображения, то систему можно использовать для сбора статистики о посещениях, траекториях движения и поведении посетителей.

Применяя проприетарные технологии распознавания от Toshiba и других партнеров, Id-Me позволяет использовать биометрическую идентификацию для того, чтобы определить пол, возраст покупателя, выявить его личные предпочтения, связав все это с CRM. Отлично подходит такая система и для того, чтобы распознать важного клиента, сразу получив информацию о нем, дате последнего посещения им магазина или другой площадки. Все это поможет найти общий язык с человеком, мгновенно определившись с его предпочтениями.

Уже реализованные совместно с партнерами RecFaces примеры подобного сопряжения биометрической идентификации с CRM показали свою высокую маркетинговую эффективность. Об этом мы позже обязательно напишем подробно.

Гостиничному бизнесу знать своих клиентов крайне важно. Если человек увидит, что его помнят, причем не только имя и фамилию, но и предпочтения, то, скорее всего, такой клиент станет возвращаться во «внимательный» отель снова и снова. А для нежелательных постояльцев можно сформировать «черный список» с соответствующими данными.

Камеры наблюдения отеля будут фиксировать все происходящее, извещая администрацию в том случае, если в номер или служебное помещение проник неизвестный. Служащие отеля будут в курсе, что умная система всегда знает, кто, куда и зачем пошел, так что злоупотреблений будет меньше.

Организаторы спортивных соревнований, концертов и прочих общественных мероприятий могут в оперативном режиме получать информацию о нежелательных элементах (например, фанатах-хулиганах), пытающихся попасть на мероприятие. Потерялся ребенок? Система поможет быстро определить, как и когда это случилось, а также определит, где находится ребенок, если его видно. Что-то пошло не так? Охрана будет тут же предупреждена.

Правоохранителям будет легче поддерживать безопасность в школах или общественных местах, на объектах транспортной инфраструктуры, если они будут получать уведомления о подозрительных людях и событиях, происходящих в зоне наблюдения. Автоугоны, хулиганские выходки – все это можно предотвратить, если вовремя узнать о проблеме.

В целом, способов применения биометрических систем – огромное количество. За ними, как бы это претенциозно ни звучало, будущее. Биометрия уже используется и будет использоваться в большом количестве сфер. И Id-Me уже сейчас может применяться в большинстве из них. Подробнее о том, какие решения уже предлагает и готовит к выходу компания, ознакомиться с ее комплексными решениями, можно, посетив 23-ю Международную выставку технических средств охраны и оборудования для обеспечения безопасности и противопожарной защиты

Биоме́три́я - система распознавания людей по одной или более физическим или поведенческим чертам (трёхмерная фотография лица и/или тела, образец голоса, отпечатки пальцев, рисунок вен руки, группа крови, специальное фото роговицы глаза и т.д.). В области информационных технологий биометрические данные используются в качестве формы управления идентификаторами доступа и контроля доступа. Также биометрический анализ используется для выявления людей, которые находятся под наблюдением (широко распространено в США , а также в России - отпечатки пальцев).

Основные принципы

Биометрические данные можно разделить на два основных класса:

  • Физиологические - относятся к форме тела. В качестве примера можно привести: отпечатки пальцев , распознавание лица, ДНК , ладонь руки, сетчатка глаза, запах, голос.
  • Поведенческие - связаны с поведением человека. Например, походка и речь. Иногда для этого класса биометрии используется термин англ. behaviometrics .

Определения

Основные определения, используемые в сфере биометрических приборов :

  • Универсальность - каждый человек должен обладать измеряемой характеристикой.
  • Уникальность - насколько хорошо человек отделяется от другого с биометрической точки зрения.
  • Постоянство - мера того, в какой степени выбранные биометрические черты остаются неизменными во времени (например, в процессе старения).
  • Взыскания - простота осуществления измерения.
  • Производительность - точность, скорость и надёжность используемых технологий.
  • Приемлемость - степень достоверности технологии.
  • Устранение - простота использования замены.

Биометрическая система может работать в двух режимах:

  • Верификация - сравнение один к одному с биометрическим шаблоном. Проверяет, что человек тот, за кого он себя выдает. Верификация может быть осуществлена по смарт-карте , имени пользователя или идентификационному номеру.
  • Идентификация - сравнение один ко многим: после «захвата» биометрических данных идет соединение с биометрической базой данных для определения личности. Идентификация личности проходит успешно, если биометрический образец уже есть в базе данных.

Первое частное и индивидуальное применение биометрической системы называлось регистрацией . В процессе регистрации биометрическая информация от индивида сохранялась. В дальнейшем биометрическая информация регистрировалась и сравнивалась с информацией, полученной ранее. Обратите внимание: если необходимо, чтобы биометрическая система была надежна, очень важно, чтобы хранение и поиск внутри самих систем были безопасными.

  • Коэффициент ложного приема (FAR), или коэффициент ложного совпадения (FMR)
    FAR - коэффициент ложного пропуска, вероятность ложной идентификации, то есть вероятность того, что система биоидентификации по ошибке признает подлинность (например, по отпечатку пальца) пользователя, не зарегистрированного в системе
    FMR - вероятность, что система неверно сравнивает входной образец с несоответствующим шаблоном в базе данных.
  • Коэффициент ложного отклонения (FRR), или коэффициент ложного несовпадения (FNMR)
    FRR - коэффициент ложного отказа доступа - вероятность того, что система биоидентификации не признает подлинность отпечатка пальца зарегистрированного в ней пользователя.
    FNMR - вероятность того, что система ошибётся в определении совпадений между входным образцом и соответствующим шаблоном из базы данных. Система измеряет процент верных входных данных, которые были приняты неправильно.
  • Рабочая характеристика системы, или относительная рабочая характеристика (ROC)
    График ROC - это визуализация компромисса между характеристиками FAR и FRR. В общем случае сравнивающий алгоритм принимает решение на основании порога, который определяет, насколько близко должен быть входной образец к шаблону, чтобы считать это совпадением. Если порог был уменьшен, то будет меньше ложных несовпадений, но больше ложных приёмов. Соответственно, высокий порог уменьшит FAR, но увеличит FRR. Линейный график свидетельствует о различиях для высокой производительности (меньше ошибок - реже возникают ошибки).
  • Равный уровень ошибок (коэффициент EER), или коэффициент переходных ошибок (CER) - это коэффициенты, при которых обе ошибки (ошибка приёма и ошибка отклонения) эквивалентны. Значение EER может быть с лёгкостью получено из кривой ROC. EER - это быстрый способ сравнить точность приборов с различными кривыми ROC. В основном, устройства с низким EER наиболее точны. Чем меньше EER, тем более точной будет система.
  • Коэффициент отказа в регистрации (FTE или FER) - коэффициент, при котором попытки создать шаблон из входных данных безуспешны. Чаще всего это вызвано низким качеством входных данных.
  • Коэффициент ошибочного удержания (FTC) - в автоматизированных системах это вероятность того, что система не способна определить биометрические входные данные, когда они представлены корректно.
  • Ёмкость шаблона - максимальное количество наборов данных, которые могут храниться в системе.

Так как чувствительность биометрических приборов увеличивается, то FAR уменьшается, а FRR увеличивается.

Задачи и проблемы

Конфиденциальность и разграничение

Данные, полученные во время биометрической регистрации, могут использоваться с целями, на которые зарегистрированный индивид не давал согласия (не был осведомлён).

Опасность для владельцев защищённых данных

В случае, когда воры не могут получить доступ к охраняемой собственности, существует возможность выслеживания и покушения на носителя биометрических идентификаторов с целью получения доступа. Если что-либо защищено биометрическим устройством , владельцу может быть нанесен необратимый ущерб, который, возможно, будет стоить больше самой собственности. Например, в 2005 году малайзийские угонщики отрезали палец владельцу Мерседес-Бенц S-класса при попытке угнать его машину .

Использование биометрических данных потенциально уязвимо к мошенничеству: биометрические данные так или иначе оцифровываются. Мошенник может подключиться к шине , ведущей от сканера к обрабатывающему устройству, и получить полную информацию о сканируемом объекте. Затем мошеннику даже не понадобится живой человек, потому что, точно также подключившись к шине, он сможет проводить все операции от лица отсканированного человека, не задействуя сканер.

Биометрические данные с возможностью отмены

Преимуществом паролей над биометрией является возможность их смены. Если пароль был украден или потерян, его можно отменить и заменить новой версией. Это становится невозможным в случае с некоторыми вариантами биометрии. Если параметры чьего-либо лица были украдены из базы данных, то их невозможно отменить либо выдать новые. Биометрические данные с возможностью отмены являются тем самым путём, который должен включить в себя возможность отмены и замены биометрии. Первыми его предложили Ratha и др.

Было разработано несколько методов отменяемой биометрии. Первая система биометрии с возможностью отмены, основанная на отпечатках пальцев, была спроектирована и создана Туляковым . Главным образом отменяемая биометрия представляет собой искажение биометрического изображения или свойств до их согласования. Вариативность искаженных параметров несёт в себе возможности отмены для данной схемы. Некоторые из предложенных техник работают, используя свои собственные механизмы распознавания, как в работах Тео и Саввида , в то время как другие (Дабба ) используют преимущества продвижения хорошо представленных биометрических исследований для своих интерфейсов распознавания. Хотя увеличиваются ограничения системы защиты, всё же это делает модели с возможностью отмены более доступными для биометрических технологий.

Одним из частных вариантов решения может быть, например, использование не всех биометрических параметров. Например, для идентификации используется рисунок папиллярных линий только двух пальцев (к примеру, больших пальцев правой и левой руки). В случае необходимости (например, при ожоге подушечек двух «ключевых» пальцев) данные в системе могут быть откорректированы так, что с определённого момента допустимым сочетанием будет указательный палец левой руки и мизинец правой (данные, которые до этого не были записаны в систему - и не могли быть скомпрометированы).

Международный обмен биометрическими данными

Чтобы быть уверенными в том, что мы можем пресечь деятельность террористических организаций до того, как они доберутся до США, мы должны занять ведущее место в продвижении международных стандартов по биометрии. Развивая совместимые системы, мы сможем безопасно передавать информацию о террористах между странами, поддерживая нашу защищенность. Так же, как мы улучшаем пути сотрудничества внутри Правительства США по выявлению и устранению террористов и иных опасных личностей, у нас ещё есть обязательства перед нашими партнерами за границей совместно предотвращать любые действия террористов. <...> Что же дальше? Нам нужно усиленно следовать за инновациями. Те, кто хотят причинить нам вред, продолжают искать наши слабости. Поэтому мы не можем позволить себе замедлить развитие. <...> Мы понимаем, что при помощи биометрии и международного сотрудничества мы можем изменить и расширить возможности для путешествий, а также защитить народы разных стран от тех, кто хочет причинить нам вред.

Согласно статье, опубликованной С. Магнусон в журнале «Национальная Безопасность» (англ. National Defense Magazine ), Департамент национальной безопасности США под давлением вынуждает распространять биометрические данные . В статье говорится:

Миллер (консультант Ведомства Национальной Безопасности и по делам безопасности в Америке) сообщает, что США имеет двусторонние договоренности по обмену биометрическими данными с 25 странами. Каждый раз, когда какой-либо иностранный лидер посещал Вашингтон за последние несколько лет, Государственный департамент обязательно заключал с ним подобный договор.

Законодательное регулирование в России

Статья 11 Федерального закона «О персональных данных» № 152-ФЗ от 27 июля 2006 г. регламентирует основные особенности использования биометрических данных. Также со вступлением в силу 482-ФЗ от 29 декабря 2017 года начат процесс постепенного перехода к биометрическим способам идентификации для оказания банковских, образовательных и иных услуг, а в будущем - и оплаты проезда. В июле 2019 года Комитет Госдумы России одобрил законопроект о биометрической идентификации клиентов банков .

Биометрия в массовой культуре

Технологии биометрии были освещены в популярных кинофильмах. Это вызвало интерес потребителей к биометрии как к средству идентификации человека. В фильмах 2003 года «Люди-Х 2 » и «Халк » использовались биометрические технологии распознавания: в виде доступа по отпечатку руки в фильме «Люди-Х 2» и по отпечатку пальца в «Халке».

Но это не было так показательно, пока в 2004 году не вышел фильм «Я, робот » с Уиллом Смитом в главной роли. Футуристический фильм демонстрировал развитие новейших технологий, которые даже на сегодняшний день ещё недостаточно развиты. Использование технологий распознавания голоса и ладони в фильме зафиксировалось в представлении будущего у людей. Обе эти технологии, которые используются сегодня для охраны зданий или информации - лишь два из возможных применений биометрии.

В 2005 году вышел в прокат фильм «Остров ». Дважды за фильм клоны используют биометрические данные: чтобы проникнуть в дом и завести машину.

Фильм «Гаттака » рисует общество, в котором существует два класса людей: продукты генной инженерии, созданные для того, чтобы быть высшими (так называемые «Действительные»), и низшие обычные люди («Инвалиды»). Люди, считавшиеся «Действительными», имели большие привилегии, и доступ к запретным зонам был ограничен для таких людей и контролировался автоматическими биометрическими сканерами, похожими на сканеры отпечатков пальцев, но коловшие палец и получавшие пробу ДНК из взятой крови.

В фильме «Разрушитель » персонаж Саймон Феникс, которого играл Уэсли Снайпс , вырезает жертве глаз, чтобы открыть дверь со сканером сетчатки.

В картине «Монстры против пришельцев » студии DreamWorks военный помощник проникает в зону, используя биометрию.

Критика

Религиозная критика

См. также

Примечания

  1. Jain, A. K.; Ross, Arun & Prabhakar, Salil (January 2004), "An introduction to biometric recognition ", IEEE Transactions on Circuits and Systems for Video Technology Т. 14th (1): 4-20, DOI 10.1109/TCSVT.2003.818349

Тема 1 Основные понятия биометрии

§ 1.1. Предмет и основные понятия биометрии

Предметом биометрии служит любой биологический объект, изучаемый с применением счета или меры, т.е. с количественной стороны в целях более или менее точкой оценки его качественного состояния.

При этом имеются в виду не единичные, а групповые объекты, т.е. явления массовые, в сфере которых проявляют свое действие статические законы. Например, врач принял больного и назначил необходимое ему лекарство – это единичное явление, отдельный акт. Если же врач принял несколько больных или подверг неоднократному осмотру одно и того же большого, – это массовое явление независимо от того, каким был объект наблюдения – единичным или групповым.

Обычно наблюдения проводят на групповых объектах, например, на особях одного и того же вида, пола и возраста, которые рассматривают как составные элементы, или члены группового объекта, и называют единицами наблюдения .

Множество относительно однородных, но индивидуально различимых единиц, объединенных для совместного (группового) изучения, называют статистической совокупностью . Понятие статистической совокупности – одно из фундаментальных биометрических понятий. Оно базируется на принципе качественной однородности ее состава.

Статистический комплекс состоит из разнородных групп, объединенных для совместного (комплексного) изучения. При этом каждая группа, входящая в состав комплекса, должна состоять из однородных элементов. Например, при испытании различных доз удобрений каждый опытный участок рассматривают как отдельную группу, входящую в состав статистического комплекса.

Вопрос о форме объединения биометрических данных экспериментатор решает сам в зависимости от объекта и цели исследования. Объединяемые в статистическую совокупность или статистический комплекс результаты наблюдений представляют некую систему, не сводимую к сумме составляющих ее единиц или компонентов.

§ 1.2 Признаки и их свойства. Классификация признаков.

В общем смысле под словом "признак" подразумевают свойство, проявлением которого один предмет отличается от другого. В области биометрии признаками, по которым проводят наблюдения над объектами, служат такие характерные особенности в строении и функциях живого организма, которые позволяют отличать одну единицу наблюдения от другой, сравнивать их между собой.

Например, исследователя интересует содержание зерен в колосьях пшеницы или ржи, возделываемой на специально подготовленном участке. Массив данной культуры будет объектом наблюдения, а признаком – количество зерен в колосьях отдельных растений, которые являются единицами наблюдения, составляя в общей массе, подвергаемой изучению, статистическую совокупность.

Характерным свойством биологических признаков является варьирование величины признаков в определенных пределах при переходе от одной единицы наблюдения к другой. Например, подсчитывая наличие зерен или колосков в колосьях нетрудно заметить, что величина каждого признака колеблется, образуя совокупность числовых значений признака, по которому проводят наблюдения. Эти колебания величины одного и того же признака, наблюдаемые в массе однородных членов статистической совокупности, называют вариациями (от лат. variatio – изменения, колебания), а отдельные числовые значения варьирующего признака принято называть вариантами (от лат. varians , variantis – различный, изменяющийся).

Классификация признаков

Все биологические признаки варьируют, но не все они поддаются непосредственному измерению. Отсюда возникает деление признаков на:

    Качественные (атрибутивные);

    Количественные.

Качественные признаки не поддаются непосредственному измерению и учитываются по наличию их свойств у отдельных членов изучаемой группы. Количественные признаки поддаются непосредственному измерению или счету. Их делят на мерные (метрические) и счетные (меристические).

Мерные признаки, варьирующиеся непрерывно: их величина может принимать в определенных пределах любые числовые значения. Счетные признаки – варьируют прерывисто или дискретно: их числовые значения выражаются только целыми числами.

Если результаты наблюдений группируются в противопоставляемые друг другу группы, их варьирование называется альтернативным и признаки, по которым проводят наблюдения, – альтернативными . На языке математики величины любого варьирующего признака является переменной случайной величиной . Их принято обозначать последними в латинском алфавите прописными буквами X , Y , Z , а их числовые значения, т.е. варианты, – соответствующим строгим буквами: x 1 , x 2 , x 3 , ... , x n или y 1 , y 2 , y 3 , ... , y n и т.д. Общее обозначение любой варианты отмечают символами x i , y i и т.д., где индекс i символизирует общий характер варианты.

§ 1.3 Варьирование результатов наблюдений.

Формы учета результатов.

Биологические признаки варьируют под влиянием самых различных, в том числе и случайных, причин. Наряду с естественным варьированием на величине признаков сказываются и ошибки, неизбежно возникающие при измерении изучаемых объектов. Опыт показал, что как бы точно ни были проведены измерения, они всегда сопровождаются отклонениями от действительного значения измеряемой величины, т.е. не могут быть проведены абсолютно точно.

Разница между результатами измерений и действительно существующими значениями измерений величины называется погрешностью или ошибки. Ошибки возникают из-за неисправности или неточности измерительных приборов и инструментов (технические ошибки ), личных качеств исследователя, его навыков и мастерства в работе (личные ошибки ) и от целого ряда других, не поддающихся регулированию и неустранимых причин (случайные ошибки ).

Технические и личные ошибки, объединяемые в категорию систематических , т.е. неслучайных ошибок, можно в значительной степени преодолеть, совершенствуя технические средства, условия работы и личный опыт. Эти меры позволяют свести размеры этих ошибок до минимума, которым можно пренебречь. Случайные же ошибки, как независимые от воли человека, остаются и сказываются на результаты наблюдений.

Итак, варьирование результатов наблюдений вызывает причины двоякого рода: естественная изменчивость признаков и ошибки измерений. Однако по сравнению с естественным варьированием случайные ошибки измерения, как правило, невелики, поэтому варьирование результатов наблюдений рассматривают обычно как естественное варьирование признаков.

Формы учета результатов.

Результаты наблюдений фиксируют в дневниках, журналах, бланках, анкетах или других документах учета. Существует много различных форм и способов учета; выбор той или иной формы определяется задачей исследования и теми условиями, в которых оно проводится. Так, на маршрутных экскурсиях, при проведении полевых опытов удобной формой учета служит дневник. В условиях лабораторного эксперимента результаты испытаний фиксируют в протоколах, журналах, учетных бланках и других формулярах.

§ 1.4 Точность измерений. Действия над приближенными числами.

Применяя биометрию к решению практических задач, исследователь имеет дело с измерениями биологических объектов. Обычно измерения проводят с точностью до десятых, сотых или тысячных долей единицы, более точные измерения производят реже. Практически каждый признак имеет свою меру, например, концентрация вредных веществ измеряется в отдельных случаях не только тысячными, но и миллионными долями единицы.

Как показывает опыт, нет необходимости в точности измерений, когда эта точность практически не нужна. Данное положение относится и к измеряемым объектам, и к вычислениям обобщающих статистических характеристик.

Разумеется, исследователь может иметь дело с точными числами, получаемыми в результате счета. Но гораздо чаще приходится оперировать приближенными числами, полученными в результате измерений. Такие математические операции, как нахождение логарифма чисел, деление, извлечение корня и другие действия, также в итоге дают приближенные числа.

Чтобы избежать грубых ошибок в работе и получить сопоставимые результаты, необходимо неукоснительно соблюдать признанные правила записи и округления приближенных чисел. Очень важно, чтобы числа, фиксируемые в документах учета, соответствовали точности, принятой при измерении варьирующих объектов. Так, если измерения проводят с точностью до одного десятичного знака, то результаты измерений нельзя записать, например, в таком виде: 5,2; 4; 4,69; 4,083 и т.д. Правильная запись этих чисел будет такова: 5,2; 4,0; 4,7; 4,1.

Числа округляются следующим образом:

    Если за последней сохраняемой цифрой следуют цифры 0, 1, 2, 3, 4 они отбрасываются (округление с недостатком);

    Если же за последней сохраняемой цифрой следуют цифрой 5, 6, 7, 8 и 9, то последняя сохраняемая цифра увеличивается на единицу (округление с избытком).

Например, числа 45,346; 8,644; 9,425; 3,585 и 3,575 округляют так: 45,35; 8,64; 9,43; 3,59; 3,58. Многие исследователи считают более точным такое правило: если за последней сохраняемой цифрой следует цифра 5 (с нулями или без них после нее), то округление осуществляется с недостатком при условии, что сохраняемая цифра четная. Если же сохраняемая цифра нечетная, то округление осуществляется с избытком. Например, числа 3,585 и 3,575 округляют до двух десятичных знаков таким образом: 3,58 и 3,58.