Самодельные бинарные часы. Бинарные наручные часы

Предлагаю вашему вниманию электронные часы на микроконтроллере . Схема часов очень проста, содержит минимум деталей, доступна для повторения начинающим радиолюбителям.

Конструкция собрана на микроконтроллере и часов реального времени DS1307 . В качестве индикатора текущего времени использован четырехразрядный семисегментный светодиодный индикатор (ультраяркий, голубого цвета свечения, что неплохо смотрится в темное время, и, заодно, часы играют роль ночника). Управление часами происходит двумя кнопками. Благодаря использованию микросхемы часов реального времени DS1307, алгоритм программы получился довольно простым. Общение микроконтроллера с часами реального времени происходит по шине I2C, и организованно программным путем.

Схема часов:

К сожалению, в схеме есть ошибка:
— выводы МК к базам транзисторов нужно подключать:
РВ0 к Т4, РВ1 к Т3, РВ2 к Т2, РВ3 к Т1
или поменять подключение коллекторов транзисторов к разрядам индикатора:
Т1 к DP1 ….. Т4 к DP4

Детали, используемые в схеме часов:

♦ микроконтроллер ATTiny26:

♦ часы реального времени DS1307:

♦ 4-разрядный семисегментный светодиодный индикатор – FYQ-5641UB -21 с общим катодом (ультраяркий, голубого цвета свечения):

♦ кварц 32,768 кГц, с входной емкостью 12,5 пф (можно взять с материнской платы компьютера), от этого кварца зависит точность хода часов:

♦ все транзисторы — NPN-структуры, можно применить любые (КТ3102, КТ315 и их зарубежные аналоги), я применил ВС547С
♦ микросхемный стабилизатор напряжения типа 7805
♦ все резисторы мощностью 0,125 ватт
♦ полярные конденсаторы на рабочее напряжение не ниже напряжения питания
♦ резервное питание DS1307 – 3 вольтовый литиевый элемент CR2032

Для питания часов можно использовать любое ненужное зарядное устройство сотового телефона (в этом случае, если напряжение на выходе зарядного устройства в пределах 5 вольт ± 0,5 вольта, часть схемы — стабилизатор напряжения на микросхеме типа 7805, можно исключить)
Ток потребления устройством составляет — 30 мА.
Батарейку резервного питания часов DS1307 можно и не ставить, но тогда, при пропадании напряжения в сети, текущее время придется устанавливать заново.
Печатная плата устройства не приводится, конструкция была собрана в корпусе от неисправных механических часов. Светодиод (с частотой мигания 1 Гц, от вывода SQW DS1307) служит для разделения часов и минут на индикаторе.

Установки микроконтроллера заводские: тактовая частота — 1МГц, FUSE-биты трогать не надо.

Алгоритм работы часов (в Algorithm Builder):

1. Установка указателя стека
2. Настройка таймера Т0:
— частота СК/8
— прерывания по переполнению (при такой предустановленной частоте вызов прерывания происходит каждые 2 миллисекунды)
3. Инициализация портов (выводы РА0-6 и РВ0-3 настраиваются на выход, РА7 и РВ6 на вход)
4. Инициализация шины I2C (выводы РВ4 и РВ5)
5. Проверка 7-го бита (СН) нулевого регистра DS1307
6. Глобальное разрешение прерывания
7. Вход в цикл с проверкой нажатия кнопки

При первом включении, или повторном включении при отсутствии резервного питания DS307, происходит переход в первоначальную установку текущего времени. При этом: кнопка S1 – для установки времени, кнопка S2 – переход к следующему разряду. Установленное время – часы и минуты записываются в DS1307 (секунды устанавливаются в ноль), а также вывод SQW/OUT (7-й вывод) настраивается на генерацию прямоугольных импульсов с частотой 1 Гц.
При нажатии кнопки S2 (S4 — в программе) происходит глобальный запрет прерываний, программа переходит в подпрограмму коррекции времени. При этом, кнопками S1 и S2 устанавливаются десятки и единицы минут, затем, с 0 секунд, нажатием кнопки S2 происходит запись уточненного времени в DS1307, разрешение глобального прерывания и возвращение в основную программу.

Часы показали хорошую точность хода, уход времени за месяц — 3 секунды.
Для улучшения точности хода, кварц рекомендуется подключать к DS1307, как указано в даташите:

Программа написана в среде «Algorithm Builder».
Вы можете, на примере программы часов, ознакомиться с алгоритмом общения микроконтроллера с другими устройствами по шине I2C (в алгоритме подробно прокомментирована каждая строчка).

Фотография собранного устройства и печатная плата в формате.lay от читателя сайта Анатолия Пильгук, за что ему огромное спасибо!

В устройстве применены: Транзисторы — СМД ВС847 и ЧИП резисторы

Приложения к статье:

(42,9 KiB, 3 198 hits)

(6,3 KiB, 4 161 hits)

(3,1 KiB, 2 640 hits)

(312,1 KiB, 5 913 hits)


Второй вариант программы часов в АБ (для тех у кого нескачивается верхний)

(11,4 KiB, 1 928 hits)

Пожелав собрать бинарные часы, я так и не нашел приемлемой готовой конструкции в сети. Большинство часов обладали серьезным недостатком – при отключении питания, настройки времени сбивались. По счастливой случайности, незадолго до этого, я начал осваивать язык Си и микроконтроллеры AVR. Итак, было решено подкрепить полученные знания практическим опытом, а заодно изобрести велосипед. А еще я очень люблю зеленые мигающие светодиоды.



Схема



RTC

Проблему сохранения текущих настроек прекрасно решают часы реального времени (RTC). Мой выбор пал на микросхему DS1307 .

По заверениям производителя, при отключении питания, она может сохранять время и дату в течении 10 лет, потребляя энергию одной лишь литиевой батарейки типа CR2032. Т.е часы продолжают тикать, сохраняя приемлемую точность хода. Время не сбивается, снова включив часы, мы получаем реальное время на циферблате, а не время на момент выключения. Микросхема общается с микроконтроллером через «квадратную шину» I 2 C, сообщая точное время и принимая новые его значения.

Сердце устройства

Выбор микроконтроллера Mega32a был продиктован следующими факторами:
Достаточное количество портов, чтобы не использовать динамическую индикацию, которую я не люблю, в первую очередь из-за того, что она раздражает зрение (мигание с высокой частотой в любом случае неестественно). С ней я познакомился, играясь с микроконтроллерами PIC на языке Proton PICBasic, и если есть возможность не использовать динамическую индикацию, я предпочту так и сделать.
Относительно низкая стоимость в 130 рублей (Mega16a, например, стоит столько же), а со скидкой так вообще 104 рубля.
Четкий QPF-44 корпус, с удобным расположением выводов


Порт «А» отображает секунды, порт «В» - минуты и порт «С» - часы. Очень удобно то, что можно присвоить портам значения времени, принятые из DS1307, без каких – либо изменений. К порту «D» подключены кнопки (пины 3 – 7), пины 0 и 1 работают как линия тактирования (SCL) и линия последовательной передачи данных (SDA) соответственно. Микросхема RTC настроена так, что выдает на своей седьмой ноге импульсы с частотой 1 герц. Эта нога подключена к 3-му пину порта «D». Сам этот порт сконфигурирован на вход, и на всякий случай включены внутренние подтяжки к плюсу питания, продублированные SMD резисторами снаружи. Такие действия в полной мере защищают от всяких неожиданностей.

Светодиоды


Светодиоды я выбрал в матовом корпусе с низкой светимостью. Сначала были опробованы яркие диоды в прозрачном корпусе, но даже при токе в 3 мА они слишком ярко и неравномерно светили, что опять таки вызывало дискомфорт. При падении напряжения на диоде в 2 вольта, напряжении питания 5 вольт и резисторе 1 кОм, значение тока, текущего через диод будет равно (5 – 2)/1000 = 3 мA. Это значение было подобрано эмпирически, а яркость свечения отлично подходит для полутемной комнаты. Если планируется устанавливать часы под прямой солнечный свет, то номинал резисторов следует уменьшить, вплоть до 200 ом, для более яркого свечения (спасибо кэп).

Кнопки

На отдельной плате с кнопками, предусмотрен «предохранитель» (он убережет нас от случайного выстрела в голову), в виде еще одной кнопки Bt6. Время можно редактировать, предварительно зажав ее.

Софт

Код написан в среде CodeVisionAvr.
Программа начинается с того, что мы настраиваем периферию микроконтроллера.
Конфигурируем порты (A,B,C – выход, D – вход)
На всякий случай предусмотрена пауза 300 мс, чтобы DS1307 успела «очухаться»
Инициализируем «квадратную шину»
Настраиваем микросхему RTC так, чтобы она выдавала прямоугольные импульсы каждую секунду на выводе SQW/OUT
Проверяем, нажата ли кнопка CLR. Если да, то сбрасываем все значения в 0
Разрешаем глобальные прерывания
Да, пару слов про них. Мы используем внешние прерывания INT0 на PD2 по спаду, т.е. каждую секунду программа будет уходить в обработчик прерываний, в котором мы считываем значения времени из DS1307 и выводим их на светодиодные индикаторы.
Уходим в бесконечный цикл, где опрашиваем кнопки
Если кнопка нажата, прибавляем (отнимаем) час (минуту) и посылаем новое значение по I2C
Попутно проверяем, вписываются ли новые значения времени в 24-х часовой и 60-ти минутный диапазоны.

Печатная плата

Плата выполнена по Великой Космической Лазерно – Утюжной Технологии на одностороннем текстолите. При изготовлении верхней платы, использовалась обычная бумага (неудачный эксперимент).


Существует много вариаций этой технологии. На мой взгляд, вот этот самый лучший:
1. Выпиливаем нужного размера кусок текстолита.
2. Шкурим торцы, избавляясь от вредных заусенцев.
3. Смазываем будущую плату чистящим порошком или зубной пастой и жесткой стороной губки драим ее до блеска.
4. Окунаем наш кусок на пару десятков секунд в слабый раствор теплого хлорного железа, до появления равномерной, матовой, бардово-коричневой поверхности. При вытаскивании из раствора, жидкость должна полностью смачивать поверхность.
5. Смываем каку, аккуратно сушим, не прикасаясь к поверхности пальцами, или чем другим жирным. Сразу кладем на чистую бумагу медью вниз, чтобы избежать попадания пыли или волос.
6. Распечатываем отзеркаленный рисунок на тонкой(!) глянцевой бумаге, можно вырезать из журнала, например. Не прикасаемся к рисунку руками. Аккуратно вырезаем, кладем рисунком вниз.
7. Прикладываем к подготовленному куску текстолита, проглаживаем через 1-2 слоя чистой бумаги, выставив утюг на максимальную температуру. Секунд 10 должно быть достаточно, ибо если передержать, дорожки расплющатся и затекут друг на друга. Тонер должен полностью прилипнуть к меди.
8. Отмачиваем под струей теплой воды, можно оставить в воде на 10 минут. Аккуратно отдираем, соскребаем бумагу. Мне в этом помогает старая зубная щетка. Удаляем оставшиеся кусочки бумаги иголкой. Тонер остается на текстолите.
9. Нагреваем на водяной бане крепкий раствор хлорного железа, бросаем туда нашу плату и бултыхаем в течении нескольких минут (по правилу Вант-Гоффа, при увеличении температуры на 10 градусов, скорость реакции увеличивается в 2 раза. Медь исчезает прямо на глазах. Можно и не греть, но ждать придется дольше.
10. Как только вся ненужная медь исчезла, выключаем газ, вытаскиваем (например пинцетом) плату, пытаемся отмыть плиту и пальцы от хлорного железа. Смываем его с платы проточной водой.
11. Берем ацетон (жидкость для снятия лака) и оттираем тонер. Можно попробовать соскрести его шкуркой или губкой.
12. Сверлим отверстия.
13. Лудим. В качестве флюса использую ЛТИ, и вам советую, однако после лужения и пайки этот флюс нужно обязательно смыть (тем же ацетоном, а лучше смесью спирто-бензин 1:1), т.к. ЛТИшка обладает некоторой проводимостью.
Все работы обязательно проводить в проветриваемом помещении, в процессе
выделяется много вредных паров.


Платы соединяются между собой PBS и PLD разъемов. Первые соединяются с верхней платой при помощи тонкого монтажного провода, его можно выковырять, например, из старого LPT кабеля или переходника.


Вторые припаиваются к нижней плате, причем штырьки, ведущие к клавиатуре загибаются (см. фото).

Печатные платы в формате SprintLayout5.0 прилагаются. На фотографиях есть пару косяков, но они уже исправлены в приложенных файлах.

Прошивка микроконтроллера

Для этого дела был собран программатор USBasp , который можно увидеть на фото сверху. Довольно приятная штука, прост в использовании и можно всегода носить его с собой в кармане(надеюсь, никто так делать не станет). Для прошивки mega32 придется установить джампер «Slow SCK».
Фьюзы:
Low fuse = 0xC4
High fuse = 0xD9
Наш микроконтроллер тактируется от внутреннего RC генератора с частотой 8 МГц. Пришлось отключить JTAG интерфейс на PortC, иначе некоторые светодиоды не будут светиться.
На плате предусмотрен ISP10 разъем, для быстрой прошивки/отладки.

Лицевая панель

Выполнена из алюминиевой пластины, шириной 40 мм и толщиной 1,5 мм. В ней просверлены 18 отверстий диаметром 5 мм, и 4 отверстия диаметром 3 мм для крепления стоек.


Сначала был распечатан шаблон и наклеен на пластину. Далее, были просверлены пилотные отверстия сверлом 1,5 мм, после чего уже сверлами нужных диаметров были просверлены основные отверстия.


В завершении, пластина была загнута, ошкурена мелкой шкуркой и отполирована пастой ГОИ.
Шаблон прилагается к приложенным файлам в виде файла layout5.0

Красный светодиод в левом верхнем углу

Повторяет импульсы, генерируемые DS1307 на 7-ой ноге, т.е. мигает каждую сегунду. Маленький p-канальный MOSFET транзистор работает в ключевом режиме, открываясь и закрываясь в такт импульсам. Сначала я хотел сделать фоновую подсветку (как Ambilight), для чего был слеплен КМОП инвертор на комплиментарной паре транзисторов(чтоб уж наверняка). Но мне не понравилось. Для одного светодиодика вполне достаточно одного транзистора, можно использовать даже pnp типа bc857. Я использовал бескорпусные mosfet irlml6402 или irlml6302.

Файлы

Исходники, hex-файл, печатные платы, схемы, схема в proteus и фьюзы заключены вот в эту картинку в виде архива. Я не доверяю файлохранилищам, своего сервера у меня пока нет, поэтому, на мой дилетантский взгляд, самым надежным местом для хранения будет Хабр. Пользователи windows могут добраться до файлов открыв сохраненную картинку с помощью WinRar.
Да, вот эта картинка.

Видео

Заключение

Источник питания можно использовать любой, способный выдать 5 вольт при токе в 70 мА. USB-порт вполне для этого подойдет. Главное, чтобы питание было «чистым», и не превышало 5 вольт. Питая часы от DC-DC преобразователя из на микросхеме mc34063 с уровнем помех ~50 мВ, я заметил глюки при установке времени. Сейчас устройство питается от свича, висящего рядом. Он выдает строго 5 вольт. По хорошему, нужно еще сделать защиту от дурака в виде диода, и какой-нибудь линейный стабилизатор на 3.3 - 5 вольт.
Отсутствие в часах функций будильника и отображения даты вполне обосновано: и то и другое присутствует в телефоне, а значит, пользоваться ими в бинарных часах с большой долей вероятности никто не будет (спасибо дядюшке Оккаму за этот вывод).

Сделать бинарные часы мечта всех ботаников в мире, не правда ли? (... или, может быть использовать синий лазер для светового меча:)). Я задумал эту идею, когда учился последний год в школе, а позже решил спроектировать и построить бинарные наручные часы.

В данный момент я только изучаю микроконтроллеры, поэтому для этого проекта выбрал популярный PIC16F628 .

Для индикации времени в часах используются 4 светодиода для отображения часов и 6 светодиодов для отображения минут:

Также для индикации часов можно использовать зеленые светодиоды, а для минут - красные:

Как повысить точность отсчета времени?

Чтобы увеличить точность хода часов я использовал Таймер 1(TMR1), который работает в асинхронном режиме, идея заключается в следующем:
чтобы продлить работу от батареи микроконтроллер находится в спящем режиме, когда не отображается время, а светодиоды будут гореть только в течение нескольких секунд после нажатия одной из двух кнопок. В спящем режиме отключены почти все функции микроконтроллера, но таймер/счетчик TMR1 продолжает работать в асинхронном режиме, так что можно отсчитывать время, пока PIC16F628 спит.

Когда 16-разрядный регистр TMR1 зарегистрирует переполнение, сигнал от прерывания заставит проснуться микроконтроллер, в данном случае счетчик секунд обновится и микроконтроллер снова уйдет в режим сна.

Для использования в асинхронном режиме TMR1 нужно задать источник тактирования, это делается путем подключения 32.768 Гц кварцевого резонатора между контактами RB7 и RB6.

Как показать время?

Время отображается при нажатии на одну из двух кнопок. Теперь вопрос: как можно определить сосотояние кнопки, если микроконтроллер находится в спящем режиме? Ну конечно, я использовал прерывание по изменению уровня на выводах RB4 и RB5, когда состояние этих контактов изменится контроллер проснется. При нажатии кнопки в таймер TMR0 загрузится значение, которое используется для измерения времени индикации, и активируются прерывания, при переполнении TMR0, все светодиоды погаснут и микроконтроллер возвратится в спящий режим.

Алгоритм работы часов:

Старт программы (инициализация);
- Переход в спящий режим.

Если произошло переполнение TMR1
- Пробуждение;
- Время на обновление;
- Переход в спящий режим.

Если произошло внешнее прерывание
- Пробуждение;
- Индикация времени с помощью светодиодов;
- Ждем переполнения TMR0;
- Выключение светодиодов;
- Переход в спящий режим.

Как установить время?

В данном случае время устанавливается кнопками и только при первом включении часов.

Схема часов

Корпус выполнен из пластика, батарейный отсек для аккумулятора типа CR2032 был вырезан с помощью станка ЧПУ. Ремешок просто приклеен к нижней части корпуса.

При программировании микроконтроллера выставить биты конфигурации, что показаны на рисунке ниже:

Архив для статьи "Бинарные наручные часы на PIC16F628"
Описание: Исходный код программы(Ассемблер)
Размер файла: 33.9 KB Количество загрузок: 610

Эти наручные электронные часы показывают время в двоичной системе, поскольку для этого требуется меньше светодиодов для отображения времени, чем у обычных цифроиндикаторных часов, да и оригинальность будет на уровне. Распространённый кварц 32С417 на 32.786 кГц был использован, чтобы PIC16F527 запустить в режиме низкой мощности и помочь повысить точность хронометража. Для ношения на запястье руки использовался подходящий матерчатый ремень.

Микроконтроллер PIC16F527 тут использовался потому, что он имеет самый маленький из доступных пакетов. Для питания часов подходят батареи типа CR2032 в специальном держателе. Эта батарея имеет приличную емкость, хотя она размером всего с монету. Чтобы уменьшить площадь печатной платы и стоимость конструкции, было выбрано одну-единственное гасящее сопротивление для всего блока SMD светодиодов.

Увеличить изображение можно сохранив его на компьютере. Проектировка схемы тут на базе типовой двухслойной печатной платы.

А стандартный 20 мм ремешок как раз помещается внутри вырезов.

Алгоритм работы часов

Основной цикл отслеживает, в каком режиме работают часы в настоящее время. Первое состояние - в нерабочем виде, где часы опрашивает коммутатор и ждет ввода пользователя. После того, как кнопка нажата, система движется ко второму состоянию, которое вычисляет, как долго часы будут отображаться. Затем идёт переход на состояние три, которое делает большую часть работы по разветвлению исходя из того, что пользователь в данный момент делает. Часы включают светодиоды в таком состоянии. Если пользователь удержал кнопку в течение более 3 секунд - часы переходят в состояние четыре. Это состояние коррекции времени. Чем дольше кнопка нажата, тем быстрее время меняется.

И продолжая тему публикуем следующий материал. Эти часы настоящего радиогика (radiogeek - радиофанат, англ.) и отображают время в двоичном коде, в момент когда кнопка нажата. Устройство показывает часы и минуты путём мигания двух светодиодов в последовательности и представляют собой два 4-разрядных двоичных числа. Вот описание того, как читать двоичные числа.

Первое число представляет час, а второе - количество минут. Например, если часы мигают 0010 - 0110, это соответствует 2 - 6, что означает часов "2" и минут "6". То есть 2:30. В устройстве отсутствует индикация "am" или "pm", но, думаем, всем понятно - это 2:30 ночи или дня. Проект предполагает также, что вы имеете опыт работы с поверхностного монтажа электронных компонентов, и, что вам знакомы навыки пайки SMD деталей.

Схема часов

Как определить время

Было сделано много вариантов и экземпляров этих часов - вы видите их на фотографиях. В архиве имеются версии 2.5 и 3.1, которая использует для поверхностного монтажа контроллер ATtiny и мини-USB порт для программирования. В контроллере ATtiny 8 контактов. Этот чип может быть запрограммирован для выполнения различных функций. У ATtiny есть внутренние часы, и подключенные светодиоды запрограммированы на мигание для отображения времени.

Электронные компоненты схемы

  • Atmel микроконтроллер ATtiny85
  • 2 SMD светодиода поверхностного монтажа
  • 2 SMD резистора 50 Ом
  • Маленькая SMD кнопка
  • CR2032 3-х вольтовая батарея типа "Таблетка"
  • Минидержатель для аккумулятора

Пайка часов

Для этого процесса была использована тостерная печь, для оплавления припоя на мелких SMD компонентах, таких как светодиоды и резисторы, и затем используется обычный паяльник чтоб припаять более крупные компоненты, такие как гнездо, кнопка, и держатель батареи.

Итак, часы собраны, но ATtiny еще не знает, как управлять светодиодами. Поэтому мы должны запрограммировать его. Существует несколько вариантов, когда дело доходит до программирования ATtiny. Вы можете сделать быстрый макет схемы и использовать специальные устройства программирования ATtiny, или, если вы можете сделать отличный Arduino программатор, так что в дальнейшем можете легко запрограммировать любые контроллеры.

Поскольку чип очень маленький, то чтоб запрограммировать его, пришлось добавить мини-USB порт, который подключается к необходимым контактам. На другой конец вешаем обычный USB-кабель, так что все, что вам нужно сделать, это подключить часы к программатору. Ну а ремешок выбирайте сами - хоть кожаный, хоть силиконовый. Корпус же здесь не нужен вообще - пусть все видят, что это часы настоящего радиоманьяка!

Обсудить статью ЧАСЫ РАДИОГИКА