Сжижение газов - О'Пять пО физике! Сжижение газов и использование жидких газов в технике.

Сжижением природного газа называется перевод его в жидкое состояние под действием температур, которые являются меньшими по сравнению с критической. Данный процесс даёт возможность его резервирования и сбережения для последующего использования, а также для организации перевозки любым видом транспорта. Вещество зачастую применяется в виде в моторах автотранспортных средств, при обработке металлов, в мобильных электростанциях и так далее. Помимо всего прочего, во многих частных домах можно встретить котел на сжиженном газе. Затраты на создание установок для его производства зависят от места расположения разработок, а также типа и состава добываемого сырья. Сейчас наиболее перспективными из них считаются плавучие, поскольку транспортировка путем сооружения подводных газопроводов зачастую является нереальной.

Подготовка и начало сжижения

Тех установок, которые используются для сжижения, одна от другой отличаются, в первую очередь, холодильным циклом. На его выбор прежде всего влияет состав и давление газа, который сюда поступает. Эти параметры, в свою очередь, находятся под влиянием нескольких факторов, среди которых: время года, место добычи и даже термин его разработки. Перед тем как начать сжижать газы и направлять в установку, необходимо очистить их от кислых примесей и осушить. На стартовой фазе процесса из сырья массово выделяются углеводороды, среди которых высококипящие нафтеновые, ароматические и парафиновые. В противном случае может произойти закупоривание арматуры и аппаратуры установок. Чтоб эффективно и качественно сжижать газы, необходимо помнить, что большое количество тяжёлых углеводородов в их составе ведет к высокой температуре сжижения и низким затратам энергии. Если же в их составе присутствует азот, то это приводит к повышению испаряемости и энергозатрат.

Каскадный метод и холодильные циклы

В основе промышленных способов сжижения лежит принцип испарения жидкости, газового расширения, а также эффект Джоуля-Томсона. Сжиженный образуется за счёт использования нескольких холодильных установок (следовательно и сред). В данном случае среда, что характеризуется меньшей конденсируется под давлением за счёт испарения более высоко кипящей соседней. Этот способ является наиболее распространённым и известен как каскадное сжижение. В большинстве случаев холодильным агентом на первом этапе выступает пропан (иногда аммиак), а на втором — этилен. Таким образом, сжижение природного газа осуществляется в данном случае под влиянием испаряемого этилена. Что касается холодильных циклов, что построены на упомянутом выше эффекте Джоуля-Томсона, то среди них различают как с однократным, так и с двойным дросселированием, а также с предварительным охлаждением за счёт специального потока и постороннего агента.

Сжижение крупными установками

Сжижать газы можно также путём использования однопоточного каскадного цикла. Здесь выступает многокомпонентная смесь, в состав которой входит азот с углеводородами. Данный метод вместе с его модификациями применяют чаще всего в крупных установках, производительность которых составляет от двух до пяти миллионов кубических метров готового продукта в сутки. Сжижать газы таким способом выгодно в плане относительно низких затрат энергии. С другой стороны, однопоточный каскадный цикл нуждается в большом количестве металлоёмкого оборудования.

Крупномасштабное производство сжиженного природного газа

Преобразование природного газа в жидкое состояние осуществляется в несколько этапов. Сначала удаляются все примеси - прежде всего, двуокись углерода, а иногда и минимальные остатки соединений серы. Затем извлекается вода, которая в противном случае может превратиться в ледяные кристаллы и закупорить установку сжижения.

Как правило, в последнее время для комплексной очистки газа от влаги, углекислого газа и тяжелых углеводородов используют адсорбционный способ глубокой очистки газа на молекулярных ситах.

Следующий этап - удаление большинства тяжелых углеводородов, после чего остаются главным образом метан и этан. Затем газ постепенно охлаждается, обычно с помощью двухцикличного процесса охлаждения в серии теплообменников (испарителей холодильных машин). Очистка и фракционирование реализуются, как и основная доля охлаждения, под высоким давлением. Холод производится одним или несколькими холодильными циклами, позволяющими снизить температуру до -160°С. Тогда он и становится жидкостью при атмосферном давлении.

сжиженный природный газ производство

Рисунок 1.Процесс сжижения природного газа (получение СПГ)

Сжижение природного газа возможно лишь при охлаждении его ниже критической температуры. Иначе газ не сможет быть превращен в жидкость даже при очень высоком давлении. Для сжижения природного газа при температуре, равной критической (Т = Т кр), давление его должно быть равным или больше критического, т. е. Р > Ркт. При сжижении природного газа под давлением ниже критического (Р < Ркт) температура газа также должна быть ниже критической.

Для сжижения природного газа могут быть использованы как принципы внутреннего охлаждения, когда природный газ сам выступает в роли рабочего тела, так и принципы внешнего охлаждения, когда для охлаждения и конденсации природного газа используются вспомогательные криогенные газы с более низкой температурой кипения (например кислород, азот, гелий). В последнем случае теплообмен между природным газом и вспомогательным криогенным газом происходит через теплообменную поверхность.

При промышленном производстве СПГ наиболее эффективными являются циклы сжижения с использованием внешней холодильной установки (принципы внешнего охлаждения), работающей на углеводородах или азоте, при этом сжижается почти весь природный газ. Широкое распространение получили циклы на смесях хладагентов, где чаще других используется однопоточный каскадный цикл, у которого удельный расход энергии составляет 0,55-0,6 кВт" ч/кг СПГ.

В установках сжижения небольшой производительности в качестве холодильного агента используется сжижаемый природный газ, в этом случае применяют более простые циклы: с дросселированием, детандером, вихревой трубой и др. В таких установках коэффициент сжижения составляет 5-20 %, а природный газ необходимо предварительно сжимать в компрессоре.

Сжижение природного газа на основе внутреннего охлаждения может достигаться следующими способами:

* изоэнтальпийным расширением сжатого газа (энтальпия i = const), т. е. дросселированием (использование эффекта Джоуля-Томсона); при дросселировании поток газа не производит какой либо работы;

* изоэнтропийным расширением сжатого газа (энтропия S-const) с отдачей внешней работы; при этом получают дополнительное количество холода, помимо обусловленного эффектом Джоуля-Томсона, так как работа расширения газа совершается за счет его внутренней энергии.

Как правило, изоэнтальпийное расширение сжатого газа используется только в аппаратах сжижения малой и средней производительности, в которых можно пренебречь некоторым перерасходом энергии. Изоэнтропийное расширение сжатого газа используется в аппаратах большой производительности (в промышленных масштабах).

Сжижение природного газа на основе внешнего охлаждения может достигаться следующими способами:

* использованием криогенераторов Стирлинга, Вюлемье-Такониса и т.д; рабочими телами данных криогенераторов является, как правило, гелий и водород, что позволяет при совершении замкнутого термодинамического цикла достигать температуры на стенке теплообменника ниже температуры кипения природного газа;

* использованием криогенных жидкостей с температурой кипения ниже, чем у природного газа, например жидкого азота, кислорода и т. д.;

* использованием каскадного цикла с помощью различных холодильных агентов (пропана, аммиака, метана и т. д.); при каскадном цикле газ легко поддающийся сжижению путем компримирования, при испарении создает холод, необходимый для понижения температуры другого трудносжижаемого газа.

После сжижения СПГ помещается в специально изолированные резервуары хранения, а затем загружается в танкеры-газовозы для транспортировки. За это время транспортировки небольшая часть СПГ неизменно «выпаривается» и может использоваться в качестве топлива для двигателей танкера. По достижении терминала потребителя сжиженный газ разгружается и помещается в резервуары хранения.

Прежде чем пустить СПГ в употребление, его вновь приводят в газообразное состояние на станции регазификации. После регазификации природный газ используется так же, как и газ, транспортируемый по газопроводам.

Приемный терминал СПГ - менее сложное сооружение, чем завод сжижения, и состоит главным образом из пункта приема, сливной эстакады, резервуаров хранения, установок обработки газов испарения из резервуаров и узла учета.

Технология сжижения газа, его транспортировки и хранения уже вполне освоена в мире. Поэтому производство СПГ - довольно стремительно развивающаяся отрасль в мировой энергетике.

Маломасштабное производство сжиженного природного газа

Современные технологии позволяют решить проблему автономного энергоснабжения небольших промышленных, социальных предприятий и населенных пунктов путем создания энергетических объектов на базе мини-энергетики с использованием СПГ.

Автономные объекты мини-энергетики с применением сжиженного природного газа не только помогут ликвидировать проблему энергообеспечения отдаленных регионов, но и являются альтернативой для прекращения зависимости потребителей от крупных поставщиков электрической и тепловой энергии. На данный момент маломасштабное производство СПГ является привлекательной сферой для инвестиций в объекты энергетики со сравнительно коротким сроком окупаемости капитальных вложений.

Существует технология сжижения природного газа с использованием энергии перепада давления газа на ГРС с внедрением детандер-компрессорных агрегатов, реализованная на ГРС "Никольская" (Ленинградская область). Расчетная производительность установки по СПГ равна 30 тоннам в сутки.

Установка сжижения природного газа состоит из блока теплообменников вымораживателей, системы охлаждения компримированного газа, блока сжижения, двухступенчатого турбодетандер-компрессорного агрегата, автоматизированной системы контроля и управления работой установки (АСКУ), арматуры, в том числе управляемой, и КИП.

Рисунок 2. Схема установки сжижения ПГ

Принцип работы установки заключается в следующем (рис.2).

Природный газ с расходом 8000 нм3/ч и давлением 3,3 МПа поступает на турбокомпрессоры К1 и К2, работающие на одном валу с турбодетандерами Д1 и Д2.

В установке по сжижению природного газа в связи с достаточно высокой чистотой природного газа (содержание СО2 не более 400 ррm) предусматривается только осушка газа, которую с целью снижения стоимости оборудования предусмотрено проводить способом вымораживания влаги.

В 2-х ступенчатом турбокомпрессоре давление газа повышается до 4,5 МПа, затем сжатый газ последовательно охлаждается в теплообменниках Т3-2 и Т3-1 и поступает в вымораживатель, состоящий из 3-х теплообменников Т11-1, Т11-2 и Т11-3 (или Т12-1, Т12-2 и Т12-3), где за счет использования холода обратного потока газа из теплообменника Т2-1 происходит вымораживание влаги. Очищенный газ после фильтра Ф1-2 разбивается на два потока.

Один поток (большую часть) направляют в вымораживатель для рекуперации холода, а на выходе из вымораживателя через фильтр подают последовательно на турбодетандеры Д1 и Д2, а после них направляют в обратный поток на выходе из сепаратора С2-1.

Второй поток направляют в теплообменник Т2-1, где после охлаждения дросселируют через дроссель ДР в сепаратор С2-1, в котором производят отделение жидкой фазы от его паров. Жидкую фазу (сжиженный природный газ) направляют в накопитель и потребителю, а паровую фазу подают последовательно в теплообменник Т2-1, вымораживатель Т11 или Т12 и теплообменник Т3-2, а после него в магистраль низкого давления, расположенную после газораспределительной станции, где давление становится равным 0,28-0,6 МПа.

Через определенное время работающий вымораживатель Т11 переводят на отогрев и продувку газом низкого давления из магистрали, а на рабочий режим переводят вымораживатель Т12. 28 января 2009 г.,А.П. Иньков, Б.А. Скородумов и др. Neftegaz.RU

В нашей стране имеется значительное количество ГРС, где редуцируемый газ бесполезно теряет свое давление, а в отдельных случаях в зимний период приходится подводить еще энергию для подогрева газа перед его дросселированием.

В то же время, используя практически бесплатную энергию перепада давления газа, можно получить общественно полезный, удобный и экологически безопасный энергоноситель - сжиженный природный газ, с помощью которого можно газифицировать промышленные, социальные объекты и населенные пункты, не имеющие трубопроводного газоснабжения.

Инструкция

На вид сжиженный природный газ (СПГ) - это бесцветная жидкость без и запаха, на 75-90% состоящая и обладающая очень важными свойствами: в жидком состоянии он не горюч, не и не агрессивен, что крайне важно при транспортировке. Процесс сжижения СПГ имеет характер, где каждая новая ступень означает сжатие в 5-12 раз, после чего следует охлаждение и переход на следующую ступень. СПГ становится жидким по завершению последней стадии сжатия.

Если же газ необходимо транспортировать на очень большие расстояния, то гораздо выгоднее использовать специальные суда – танкеры-газовозы. От места газа до ближайшего подходящего места на морском побережье протягивают трубопровод, а на берегу строят терминал. Там газ сильно сжимают и охлаждают, переводя в жидкое состояние, и закачивают в изотермические емкости танкеров (при температурах порядка -150оС).

Этот способ транспортировки имеет ряд преимуществ перед трубопроводным. Во-первых, один подобный за один рейс может перевезти громадное количество газа, ведь плотность вещества, находящегося в жидком состоянии, гораздо выше. Во-вторых, основные расходы приходятся не на транспортировку, а на погрузку-разгрузку продукта. В-третьих, хранение и перевозка сжиженного газа гораздо безопаснее, чем сжатого. Можно не сомневаться, что доля природного газа, транспортируемого в сжиженном виде, будет неуклонно возрастать по сравнению с газопроводными поставками.

Сжиженный природный газ востребован в различных областях деятельности человека - в промышленности, в автомобильном транспорте, в медицине, в сельском хозяйстве, в науке и пр. Немалую популярность сжиженные газ ы завоевали за счет удобства их использования и транспортировки, а также экологической чистоты и невысокой стоимости.

Инструкция

Перед сжижением углеводородного газ а его необходимо предварительно очистить и удалить водяной пар. Углекислый газ удаляют, используя систему трехступенчатых молекулярных фильтров. Очищенный таким образом газ в небольших количествах используется в качестве регенерационного. Восстанавливаемый газ либо сжигается, либо применяется для получения в генераторах мощности.

Просушивание происходит с помощью 3-х молекулярных фильтров. Один фильтр поглощает водяной пар. Другой сушит газ , который далее и проходит через третий фильтр. Для понижения температуры газ пропускается через водяной охладитель.

Азотный способ подразумевает производство сжиженного углеводородного газ а из любых газ овых источников. К преимуществам этого метода можно отнести простоту технологии, уровень безопасности, гибкость , легкость и малозатратность эксплуатации. Ограничения этого метода - необходимость источника электроэнергии и высоких капитальных затрат.

При смешанном способе производства сжиженного газ а в качестве хладагента используют смесь азота и . Получают газ также из любых источников. Этот метод отличается гибкостью производственного цикла и небольшими переменными затратами на производство. Если сравнивать с азотным способом сжижения, здесь капитальные затраты более существенны. Также необходим источник электроэнергии.

Источники:

  • Что такое сжижение газов?
  • Сжиженный газ: получение, хранение и транспортировка
  • что такое сжиженный газ

Природный газ добывается из недр Земли. Это полезное ископаемое состоит из смеси газообразных углеводородов, которая образуется в результате разложения органических веществ в осадочных породах земной коры.

Какие вещества входят в состав природного газа

На 80-98% природный газ состоит (CH4). Именно физико-химические свойства метана определяют характеристики природного газа. Наряду с метаном в составе природного газа присутствуют соединения такого же структурного типа – этан (C2H6), пропан (C3H8) и бутан (C4H10). В некоторых случаях в небольших количествах, от 0,5 до 1%, в природном газе обнаруживаются: (С5Н12), (С6Н14), гептан (С7Н16), (С8Н18) и нонан (С9Н20).

Также природный газ включает в себя соединения сероводорода (H2S), углекислого газа (CO2), азот (N2), гелий (He), водяные пары. Состав природного газа зависит от характеристик месторождений, где он добывается. Природный газ, добываемый в чисто газовых месторождениях, состоит в основном из метана.

Характеристики составляющих природного газа

Все химические соединения, входящие в состав природного газа, обладают рядом свойств, полезных в различных сферах промышленности и в быту.

Метан – горючий газ без цвета и запаха, он легче воздуха. Используется в промышленности и быту в качестве горючего. Этан – горючий газ без цвета и запаха, он немного тяжелее воздуха. В основном, из получают этилен. Пропан – ядовитый газ без цвета и запаха. Ему по свойствам близок бутан. Пропан используется, например, при сварочных работах, при переработке металлолома. Сжиженным и бутаном заправляют зажигалки и газовые баллоны. Бутан используют в холодильных установках.

Пентан, гексан, гептан, октан и нонан – . Пентан в небольших количествах входят в состав моторных топлив. Гексан также используется при экстрагировании растительных масел. Гептан, гексан, октан и нонан являются хорошими органическими растворителями.

Сероводород – ядовитый бесцветный тяжелый газ, тухлых яиц. Этот газ даже в маленькой концентрации вызывает паралич обонятельного нерва. Но в силу того, что сероводород обладает хорошими антисептическими свойствами, его в малых дозах применяют в медицине для сероводородных ванн.

Углекислый газ – негорючий бесцветный газ без запаха с кислым вкусом. Углекислый газ используют в пищевой промышленности: в производстве газированных напитков для насыщения их углекислотой, для заморозки продуктов, для охлаждения грузов при транспортировке и т.п.

Азот – безвредный бесцветный газ, без вкуса и запаха. Применяют его в производстве минеральных удобрений, используют в медицине и т.п.

Гелий – один из самых легких газов. Он не имеет цвета и запаха, не горит, не токсичен. Гелий используют в различных областях промышленности – , для охлаждения атомных реакторов, наполнения стратостатов.

Сжижение газов, переход вещества из газообразного состояния в жидкое. Сжижение газов достигается охлаждением их ниже критической температуры (Т к ) и последующей конденсацией в результате отвода теплоты парообразования (конденсации). Охлаждение газа ниже Т К необходимо для достижения области температур, при которых газ может сконденсироваться в жидкость (при Т > Т К жидкость существовать не может). Впервые газ (аммиак) был сжижен в 1792 (голландский физик М. ван Марум). Хлор был получен в жидком состоянии в 1823 (М. Фарадей ), кислород - в 1877 (швейцарский учёный Р. Пикте и французский учёный Л. П. Кальете), азот и окись углерода - в 1883 (З. Ф. Вроблевский и К. Ольшевский ), водород - в 1898 (Дж. Дьюар ), гелий - в 1908 (Х. Камерлинг-Оннес ).

Идеальный процесс Сжижение газов изображен на рис. 1 . Изобара 1-2 соответствует охлаждению газа до начала конденсации, изотерма 2-0 - конденсации газа. Площадь ниже 1-2-0 эквивалентна количеству теплоты, которое необходимо отвести от газа при его сжижении, а площадь внутри контура 1-2-0-3 (1-3 - изотермическое сжатие газа, 3-0 - адиабатическое его расширение) характеризует термодинамически минимальную работу L min , необходимую для Сжижение газов :

Для Сжижение газов в промышленных масштабах чаще всего применяются циклы с детандерами (рис. 3 ), т. к. расширение газов с производством внешней работы - наиболее эффективный метод охлаждения. В самом детандере жидкость обычно не получают, ибо технически проще проводить само сжижение в дополнительной дроссельной ступени. После сжатия в компрессоре (1-2 ) и предварительного охлаждения в теплообменнике (2-3 ) поток сжатого газа делится на 2 части: часть М отводится в детандер, где, расширяясь, производит внешнюю работу и охлаждается (3-7 ). Охлажденный газ подаётся в теплообменник, где понижает температуру оставшейся части сжатого газа 1 - М , которая затем дросселируется и сжижается. Теоретически расширение в детандере должно осуществляться при постоянной энтропии (3-6 ). Однако из-за потерь расширение протекает по линии 3-7 . Для увеличения термодинамической эффективности процесса Сжижение газов иногда применяют несколько детандеров, работающих на различных температурных уровнях.

Циклы с тепловыми насосами обычно используются (наряду с детандерными и дроссельными циклами) при Сжижение газов с помощью холодильно-газовых машин, которые позволяют получать температуры до 12 К, что достаточно для сжижения всех газов, кроме гелия (см. табл.). Для сжижения гелия к машине пристраивается дополнительная дроссельная ступень.

Подвергаемые сжижению газы должны очищаться от паров воды, масла и др. примесей (например, воздух - от углекислоты, водород - от воздуха), которые при охлаждении могут затвердеть и закупорить теплообменную аппаратуру. Поэтому узел очистки газа от посторонних примесей - необходимая часть установок Сжижение газов

О применении сжиженных газов см. в ст. Глубокое охлаждение .

Значения температуры кипения Т кип (при 760 мм. рт. ст. ), критической температуры Т К , минимальной L min и действительной L Д работ сжижения некоторых газов


Газ

Т кип , К

Т К , К

L min , квт ч/кг

L д , квт ч/кг

Азот

Этилен


77,4

126,2

0,220

1,2-1,5

Лит.: Фастовский В. Г., Петровский Ю. В., Ровинский А. Е., Криогенная техника, 2 изд., М., 1974; Справочник по физико-техническим основам криогеники, 2 изд., М., 1973. См. также лит. при ст.

ГАЗ . Газообразным состоянием называется такое состояние вещества, в котором силы, действующие между молекулами, чрезвычайно малы и размеры самих молекул ничтожны сравнительно с промежутками между ними. Между столкновениями молекулы газа двигаются прямолинейно, равномерно и совершенно беспорядочно. При нагревании и разрежении все газы стремятся к предельному состоянию так называемого идеального , или совершенного газа .

В идеальном газе междумолекулярные силы равны нулю, и объем самих молекул бесконечно мал сравнительно с объемом междумолекулярного пространства. Состояние идеального газа является тем предельным разведенным состоянием вещества, к которому стремятся все тела природы при достаточно высоких температурах и достаточно низких давлениях; в этом и заключается особое значение состояния идеального газа, к тому же наиболее просто поддающегося исследованию и потому полнее всего изученного. Вещество, в крайнем разрежении заполняющее межпланетное пространство, может считаться находящимся в состоянии идеального газа.

Газовое давление (р) обусловливается ударами молекул газа о стенки сосуда. Согласно кинетической теории, средняя кинетическая энергия молекул газа пропорциональна абсолютной температуре. В кинетической теории показывается, что идеальный газ строго подчиняется следующему уравнению состояния, связывающему три параметра состояния: v, T и р, из которых два являются независимыми, а третий - их функцией:

Это уравнение (уравнение Клапейрона ) заключает в себе в явной форме три основных закона состояния идеального газа:

1) Закон Бойля-Мариотта . При постоянной температуре (Т) произведение (p∙v) для данного количества идеального газа есть величина постоянная (p∙v = Const), т. е. объем идеального газа (v) обратно пропорционален его давлению (р): изотермы идеального газа в системе координат (v, р) являются равнобокими гиперболами, асимптотами которых служат оси координат.

2) . При постоянном (р) объем данного количества идеального газа линейно возрастает с температурой:

(v 0 - объем при температуре = 0°С, α - коэффициент расширения идеального газа). Изменение (p) с температурой при v = Const подчиняется такому же закону:

(α) в уравнении (3) - коэффициент давления, численно равный коэффициенту расширения (α) в уравнении (2) = 1/273,1 = 0,00367 - величина, независящая от природы газа и одинаковая для всех идеальных газов; р 0 - давление при температуре = 0°С. Вводя вместо температуры абсолютную температуру

находим вместо уравнений (2) и (3):

3) Закон Авогадро . Из уравнения (1) видно, что газовая постоянная R = p 0 ∙v 0 /273,1 пропорциональна нормальному объему v 0 , занимаемому данным количеством газа при нормальных условиях (р 0 = 1 Atm и t 0 = 0°С = 273,1° К), т. е. обратно пропорциональна плотности газа при нормальных условиях D 0 . По закону Авогадро, при одинаковых (р) и (Т) все идеальные газы содержат в равных объемах (например, равных v 0) равное число молекул. Обратно: равное число молекул (например, 1 моль = 1 граммолекуле) всякого газа в идеальном состоянии занимает один и тот же объем v 0 при нормальных условиях, независимо от природы газа (в 1 моле всякого вещества содержится N 0 = 6,06∙10 23 отдельных молекул - число Авогадро ). Найдено с большой точностью, что нормальный молярный объем любого идеального газа (V 0) м равен 22,412 литр/моль. Отсюда можно рассчитать число молекул в 1 см 3 любого идеального газа при нормальных условиях: n0 = 6,06∙10 23 /10 3 ∙22,416 = 2,705∙10 19 см 3 (число Лошмита ). При помощи уравнения (1) закон Авогадро выражается в том, что газовая постоянная R при расчете на 1 моль любого газа будет одна и та же, независимо от природы газа. Т. о. R является универсальной постоянной с размерностью [работа ]/[масса ][температура ] и выражает работу расширения 1 моля идеального газа при нагревании его на 1°С при р = Const:

в этом и состоит физическое значение R.

находим числовое значение

В других единицах значения R (на 1 моль) таковы:

Кроме разобранных трех законов, из уравнения (1) состояния идеального газа в соединении с двумя началами термодинамики следуют еще такие основные законы:

4) Закон Джоуля . Одно из общих уравнений термодинамики

дает вместе с уравнением (1) следующие условия для внутренней энергии U идеального газа:

т. е. U идеального газа есть функция только Т (закон Джоуля); при изотермическом расширении идеального газа все поглощаемое тепло переходит во внешнюю работу, а при изотермическом сжатии вся расходуемая работа - в выделяющееся тепло.

5) Теплоемкости идеального газа при постоянном объеме c v и при постоянном давлении с р являются функциями одной лишь Т. Термодинамика дает общие уравнения

но для идеального газа (р) и (v) линейно зависят от (Т), по закону Гей-Люссака (4) и (5); следовательно, правые части уравнений (9) обращаются в 0 и

Теплоемкости с р и c v не независимы друг от друга, но связаны для идеального газа простым условием:

вытекающим из газовых законов (R имеет размерность теплоемкости), т. е., если с р и c v относить к 1 молю идеального газа, то они разнятся между собой на 2 (точнее - на 1,986) – cal/моль∙град.

В кинетической теории принимается, по принципу равномерного распределения энергии, что на каждую степень свободы газовой молекулы приходится энергия k 0 ∙Т/2, а на 1 моль приходится

(k 0 = –R/N 0 есть газовая постоянная, рассчитанная на 1 молекулу - постоянная Больцмана ). Числом степеней свободы (i) называется число независимых друг от друга видов механической энергии, которой обладает молекула газа. Тогда энергия 1 моля

(приближенно, считая R = 2, c v = i, с р = i+2).

В учении о газе важную роль играет отношение c p /c v = γ; из уравнений (11) и (12):

В простейшем случае одноатомного газа (молекула которого состоит из 1 атома, каковы благородные газы и пары многих металлов) i наименьшее и равняется 3: вся энергия молекулы сводится к кинетической энергии ее поступательных движений, которые могут совершаться по трем независимым взаимно перпендикулярным направлениям; тогда

а γ имеет наибольшую возможную величину: γ = 5/3 = 1,667. Для двухатомных газов (Н 2 , O 2 , N 2 , СО и другие) можно считать I = 3+2 (два вращения вокруг двух взаимно перпендикулярных осей, перпендикулярных к линии, соединяющей оба атома); тогда c v = 4,96 ≈ 5, cр = 6,95 ≈ 7 и γ = 7/5 = 1,40. Для трехатомного газа (Н 2 O, СO 2 , H 2 S, N 2 O)i = 3+3 (вращение вокруг трех взаимно перпендикулярных осей) и c v = 5,96 ≈ 6, cр = 7,95 ≈ 7 и γ = 4/3 = 1,33.

При дальнейшем усложнении строения молекулы, т. е. с увеличением i, возрастают c v и с р, а γ = 1 + 2/i и стремится к 1. Табл. 1 показывает, что все сказанное хорошо согласуется с данными опыта, что γ всегда >1 и ≤1,667 и не может быть = 1,50 (для i = 4).

Для одноатомных газов c v и с р, в соответствии с теорией, практически не изменяются с температурой (так, для Ar значения c v и с р лежат в пределах от 2,98 до 3,00 между температурами = 0° и 1000° С). Изменения c v и с р с температурой находят объяснение в теории квант. Впрочем, теплоемкости газов, близких к идеальным, практически почти не изменяются в широких интервалах температуры. Экспериментально определяются обычно с р и у, a c v вычисляется из этих данных.

Реальные газы . Все газы, существующие в действительности, - реальные газы б. или м. уклоняются от законов идеальных газов, но тем меньше, чем выше температура и чем ниже давление. Т. о. законы идеальных газов являются для реальных газов предельными. При обычной температуре уклонения меньше всего у газов, критические температуры которых чрезвычайно низки (т. н. постоянные газы: Не, Н 2 , N 2 , О 2 , воздух); у газов же со сравнительно высокой критической температуры и у паров (паром называется газ при температуре меньше критической температуры) уклонения бывают очень значительны. Причины уклонений реальных газов от газовых законов заключаются в том, что: 1) в них действуют междумолекулярные силы; поэтому поверхностные молекулы втягиваются внутрь газов силами, равнодействующая которых, рассчитанная на единицу поверхности и направленная перпендикулярно к ней, называется молекулярным (внутренним) давлением К ; 2) не весь объем газа (v), а только часть его (v-b) дает свободу для движений молекул; часть объема (b), коволюм , как бы занята самими молекулами. Если бы газ был идеальным, его давление было бы больше наблюдаемого (р) на величину К; поэтому уравнение состояния реального газа напишется в виде.

В этом общем уравнении К и b могут зависеть от Т и v.

Ван-дер-Ваальс показал, что в простейшем случае К = a/v 2 , а b - величина постоянная, равная учетверенному объему самих молекул газа. Таким образом, уравнение Ван-дер-Ваальса имеет вид:

а и b, константы Ван-дер-Ваальса, как показывает опыт, все же зависят от T и v, и потому уравнение (15) является лишь первым приближением; оно хорошо передает качественную форму изотерм реальных газов.

На фиг. 1 изображены для СO 2 теоретической изотермы: S-образные части этих изотерм отвечают термодинамически метастабильным состояниям .

На фиг. 2 изображены для СО 2 экспериментальные изотермы: S-образные части кривых заменены прямолинейными частями; справа от этих частей кривые соответствуют газу (ненасыщенному пару), слева - жидкости, а сами прямолинейные отрезки - равновесию пара и жидкости. Уравнение (15), в полном согласии с опытом, показывает, что с повышением температуры размеры прямолинейных отрезков на изотермах делаются все меньше (фиг. 2) и, наконец, при некоторой температуре равной критической температуре длина этого отрезка обращается в 0. При температуре большей критической температуры газ не может обращаться в жидкость ни при каких давлениях: жидкость перестает существовать. Т. о. уравнение Ван-дер-Ваальса охватывает два состояния - газообразное и жидкое - и служит основанием для учения о непрерывности перехода между этими двумя состояниями. Критические температуры для некоторых газов имеют следующие значения: +360°С для Н 2 О, +31°С для СО 2 , –241°С для Н 2 и –254°С для Не.

Сжижение газа . Всякий газ можно обратить в жидкость надлежащим давлением, предварительно охладив его ниже критической температуры. Необходимые для сжижения СО 2 давления (в Atm) при разных температурах приведены в табл. 2.

Понятно, что эти давления являются давлениями насыщенного пара жидкой углекислоты и тем ниже, чем ниже температура.

Чтобы предварительно сильно охладить газ для сжижения, в технических установках пользуются эффектом Джоуля-Томсона, заключающимся в том, что при адиабатическом расширении (например, при резком падении давления, когда газ вытекает из отверстия) внутренняя энергия газа возрастает на ΔU, а Т изменяется на ΔТ, причем термодинамически

В случае идеальных газов ΔU = 0 и ΔТ = 0 [так как, по уравнению (1), T∙dv/dT – v = 0].

Для реальных газов ΔТ ≠ 0, т. е. происходит охлаждение или нагревание, смотря по тому, будет ли T∙dv/dT – v ≠ 0 (Δp < 0). По уравнению Ван-дер-Ваальса,

(с достаточным приближением). Т. о. при достаточно высоких температурах все газы при адиабатическом расширении нагреваются (ΔТ > 0, т. к. a/R∙T< b), но с понижением температуры для каждого газа наступает инверсионная точка Т i , определяемая условием

ниже которой газы начинают охлаждаться при адиабатическом расширении (a/R∙T> b при Т < Т i). Для всех газов, кроме Н 2 и Не, Т i лежит выше обычных температур (так, для воздуха Т i соответствует +360°С), и потому газы могут быть сжижены по принципу Линде , без предварительного охлаждения. Для Н 2 инверсионная точка Т i - 80,5°С, а для Не - даже 15°К; поэтому Н 2 и Не для сжижения д. б. предварительно охлаждены ниже этих температур.

Соответственные состояния . Критические температура Т к, давление р к и объем v к м. б. выражены через константы Ван-дер-Ваальса а, b и R следующим образом:

Если за единицы измерения Т, р и v принять соответственно критические величины, то вместо Т, р и v состояние будет характеризоваться приведенными величинами :

Если ввести θ, π и ϕ в уравнение Ван-дер-Ваальса (15), то константы а, b и R сократятся, и получится приведенное уравнение состояния , с численными коэффициентами

вовсе не содержащее величин, зависящих от природы вещества. Уравнение (19) предполагает, однако, правильность уравнения Ван-дер-Ваальса, и потому уклонения от него часто весьма значительны, особенно в случае ассоциированных веществ. Учение о соответственных состояниях (так называются состояния, отвечающие одинаковым θ, π и ϕ) дает возможность находить большое число универсальных зависимостей, подобных уравнению (19).

Применение газов . Сжатые и сжиженные газы применяются в технике всюду, где нужны значительные количества газа в небольшом объеме; так, СО 2 применяется для газирования вод, Сl 2 и фосген - в военно-химическом деле, O 2 - для медицинских целей, сжатый воздух - для пуска двигателей внутреннего сгорания. Особенное значение сжиженные газы (СО 2 и NH 3) имеют в холодильном деле, в холодильных машинах (например, для получения искусственного льда). Легкие газы (Н 2 , светильный газ, в последнее время Не) применяются для наполнения аэростатов . Инертные газы (N 2 и благородные газы, особенно Аr) применяются для наполнения полуваттных ламп накаливания. Особняком стоит применение газа для освещения или в качестве топлива: светильный, силовой, водяной газы и другие.