И выбор одной из них. Опровержение "Парадокса Монти Холла" (мнимое опровержение, как выяснилось)

Загадка Монти Холла

В поисках автомобиля, игрок выбирает дверь 1. Тогда ведущий открывает 3-ю дверь, за которой находится коза, и предлагает игроку изменить свой выбор на дверь 2. Стоит ли ему это делать?

Парадо́кс Мо́нти Хо́лла - одна из известных задач теории вероятностей , решение которой, на первый взгляд, противоречит здравому смыслу. Задача формулируется как описание гипотетической игры , основанной на американском телешоу «Let’s Make a Deal», и названа в честь ведущего этой передачи. Наиболее распространенная формулировка этой задачи, опубликованная в году в журнале Parade Magazine , звучит следующим образом:

Представьте, что вы стали участником игры, в которой вам нужно выбрать одну из трех дверей. За одной из дверей находится автомобиль , за двумя другими дверями - козы . Вы выбираете одну из дверей, например, номер 1, после этого ведущий, который знает, где находится автомобиль, а где - козы, открывает одну из оставшихся дверей, например, номер 3, за которой находится коза. После этого он спрашивает вас, не желаете ли вы изменить свой выбор и выбрать дверь номер 2. Увеличатся ли ваши шансы выиграть автомобиль, если вы примете предложение ведущего и измените свой выбор?

Хотя данная формулировка задачи является наиболее известной, она несколько проблематична, поскольку оставляет некоторые важные условия задачи неопределенными. Ниже приводится более полная формулировка.

При решении этой задачи обычно рассуждают примерно так: после того, как ведущий открыл дверь, за которой находится коза, автомобиль может быть только за одной из двух оставшихся дверей. Поскольку игрок не может получить никакой дополнительной информации о том, за какой дверью находится автомобиль, то вероятность нахождения автомобиля за каждой из дверей одинакова, и изменение первоначального выбора двери не дает игроку никаких преимуществ. Однако такой ход рассуждений неверен. Если ведущий всегда знает, за какой дверью что находится, всегда открывает ту из оставшихся дверей, за которой находится коза, и всегда предлагает игроку изменить свой выбор, то вероятность того, что автомобиль находится за выбранной игроком дверью, равна 1/3, и, соответственно, вероятность того, что автомобиль находится за оставшейся дверью, равна 2/3. Таким образом, изменение первоначального выбора увеличивает шансы игрока выиграть автомобиль в 2 раза. Этот вывод противоречит интуитивному восприятию ситуации большинством людей , поэтому описанная задача и называется парадоксом Монти Холла .

Задача и решение

Более точная формулировка задачи

Наиболее распространённая формулировка задачи, опубликованная в журнале Parade , к сожалению, не вполне точна, поскольку оставляет неопределёнными несколько существенных условий. Более полная и точная формулировка задачи выглядит примерно так:

Представьте, что вы стали участником игры, в которой вы находитесь перед тремя дверями. Ведущий, о котором известно, что он честен , поместил за одной из дверей автомобиль, а за двумя другими дверями - по козе. У вас нет никакой информации о том, что за какой дверью находится. Ведущий говорит вам: «Сначала вы должны выбрать одну из дверей. После этого я открою одну из оставшихся дверей, за которой находится коза. Затем я предложу вам изменить свой первоначальный выбор и выбрать оставшуюся закрытую дверь вместо той, которую вы выбрали вначале. Вы можете последовать моему совету и выбрать другую дверь, либо подтвердить свой первоначальный выбор. После этого я открою дверь, которую вы выбрали, и вы выиграете то, что находится за этой дверью.»

Вы выбираете дверь номер 3. Ведущий открывает дверь номер 1 и показывает, что за ней находится коза. Затем ведущий предлагает вам выбрать дверь номер 2. Увеличатся ли ваши шансы выиграть автомобиль, если вы последуете его совету?

В данной задаче также неявно предполагается, что открытие ведущим двери с козой не несёт никакой информации о том, что находится за дверью, которую сначала выбрал игрок. Наиболее простой способ добиться этого - потребовать, чтобы в случае, когда автомобиль находится за дверью, выбранной игроком, ведущий открывал одну из оставшихся дверей с козами обязательно случайным образом.

Вначале вероятность того, что участник попадёт на автомобиль равна 1/3. После того как ведущий открывает дверь, большинство людей считают что она должна быть равна 1/2, но это не так. Ведущий знает, где находится автомобиль, и поэтому не открывает дверь с автомобилем. И вероятность была бы 1/2 только тогда, когда ведущий бы не знал положение призов, и тогда бы открытие двери ничего бы не меняло.

Наиболее существенным дополнением по сравнению с приведённой выше формулировкой здесь является то, что игрок до начала игры знает, что после его выбора ведущий в любом случае откроет дверь с козой и в любом случае предложит игроку изменить свой выбор, то есть совершение данных действий ведущим не несёт никакой информации о том, правильным или неправильным был первоначальный выбор игрока.

Решение

Правильным ответом к этой задаче является следующее: да, шансы выиграть автомобиль увеличиваются в два раза, если игрок будет следовать совету ведущего и изменит свой первоначальный выбор.

Наиболее простое объяснение этого ответа состоит в следующем соображении. Для того, чтобы выиграть автомобиль без изменения выбора, игрок должен сразу угадать дверь, за которой стоит автомобиль. Вероятность этого равна 1/3. Если же игрок первоначально попадает на дверь, за которой стоит коза (а вероятность этого события 2/3, поскольку есть две козы и лишь один автомобиль), то он может однозначно выиграть автомобиль, изменив своё решение, так как остаются автомобиль и одна коза, а дверь с козой ведущий уже открыл.

Таким образом, без смены выбора игрок остаётся при своей первоначальной вероятности выигрыша 1/3, а при смене первоначального выбора, игрок оборачивает себе на пользу в два раза большую оставшуюся вероятность того, что в начале он не угадал.

Также интуитивно понятное объяснение можно сделать, поменяв местами два события. Первое событие – принятие решения игроком о смене двери, второе событие – открытие лишней двери. Это допустимо, т.к. открытие лишней двери не дает игроку никакой новой информации (док-во см. в этой статье).

Тогда задачу можно свести к следующей формулировке. В первый момент времени игрок делит двери на две группы: в первой группе одна дверь (та что он выбрал), во второй группе две оставшиеся двери. В следующий момент времени игрок делает выбор между группами (sic!). Очевидно, что для первой группы вероятность выигрыша 1/3, для второй группы 2/3. Игрок выбирает вторую группу. Во второй группе он может открыть обе двери (sic!). Одну открывает ведущий, а вторую сам игрок.

Ключи к пониманию

Несмотря на простоту объяснения этого явления, множество людей интуитивно полагают, что вероятность выигрыша не меняется при изменении игроком своего выбора. Обычно невозможность изменения вероятности выигрыша мотивируется тем, что при вычислении вероятности происшедшие в прошлом события не имеют значения, как это происходит, например, при подбрасывании монетки - вероятность выпадения орла или решки не зависит от того, сколько раз до этого выпал орёл или решка. Поэтому многие считают, что в момент выбора игроком одной двери из двух уже не имеет значения, что в прошлом имел место выбор одной двери из трёх, и вероятность выиграть автомобиль одинаковая как при изменении выбора, так и при оставлении первоначального выбора.

Однако, хотя такие соображения верны в случае подбрасывания монетки, они верны не для всех игр. В данном случае должно быть проигнорировано открытие двери ведущим . Игрок по существу выбирает между той одной дверью, которую он выбрал сначала, и остальными двумя - открытие одной из них служит лишь для отвлечения внимания игрока. Известно, что имеется один автомобиль и две козы. Первоначальный выбор игроком одной из дверей делит возможные исходы игры на две группы: либо автомобиль находится за дверью, выбранной игроком (вероятность этого 1/3), либо за одной из двух других (вероятность этого 2/3). При этом уже известно, что в любом случае за одной из двух оставшихся дверей находится коза, и, открывая эту дверь, ведущий не даёт игроку никакой дополнительной информации о том, что находится за выбранной игроком дверью. Таким образом, открытие ведущим двери с козой не меняет вероятности (2/3) того, что автомобиль находится за одной из оставшихся дверей. А поскольку уже открытую дверь игрок не выберет, то вся эта вероятность оказывается сосредоточена в том событии, что автомобиль находится за оставшейся закрытой дверью.

Более интуитивно понятное рассуждение: Пусть игрок действует по стратегии «изменить выбор». Тогда проиграет он только в том случае, если изначально выберет автомобиль. А вероятность этого - одна треть. Следовательно, вероятность выигрыша: 1-1/3=2/3. Если же игрок действует по стратегии «не менять выбор», то он выиграет тогда и только тогда, когда изначально выбрал автомобиль. А вероятность этого - одна треть.

Другая частая причина трудного понимания решения этой задачи состоит в том, что нередко люди представляют себе немного другую игру - когда заранее неизвестно, будет ли ведущий открывать дверь с козой и предлагать игроку изменить свой выбор. В этом случае игрок не знает тактики ведущего (то есть, по существу, не знает всех правил игры) и не может сделать оптимальный выбор. Например, если ведущий будет предлагать смену варианта лишь в случае, когда игрок изначально выбрал дверь с автомобилем, то, очевидно, игрок должен всегда оставлять первоначальное решение без изменения. Именно поэтому важно иметь в виду точную формулировку задачи Монти Холла.(Хотя, даже при таком варианте, правильной стратегией будет смена выбора двери (при условии, что игрок не знает «хитрости» ведущего). Так как в этом случае проигрыш будет означать реализацию вероятности 1/3.)

Увеличение количества дверей

Для того, чтобы легче понять суть происходящего, можно рассмотреть случай, когда игрок видит перед собой не три двери, а, например, сто. При этом за одной из дверей находится автомобиль, а за остальными 99 - козы. Игрок выбирает одну из дверей, при этом в 99 % случаев он выберет дверь с козой, а шансы сразу выбрать дверь с автомобилем очень малы - они составляют 1 %. После этого ведущий открывает 98 дверей с козами и предлагает игроку выбрать оставшуюся дверь. При этом в 99 % случаев автомобиль будет находиться за этой оставшейся дверью, поскольку шансы на то, что игрок сразу выбрал правильную дверь, очень малы. Понятно, что в этой ситуации рационально мыслящий игрок должен всегда принимать предложение ведущего.

При рассмотрении увеличенного количества дверей нередко возникает вопрос: если в оригинальной задаче ведущий открывает одну дверь из трёх (то есть 1/3 от общего количества дверей), то почему нужно предполагать, что в случае 100 дверей ведущий откроет 98 дверей с козами, а не 33 ? Это соображение является обычно одной из существенных причин того, почему парадокс Монти Холла входит в противоречие с интуитивным восприятием ситуации. Предполагать открытие 98 дверей будет правильным потому, что существенным условием задачи является наличие только одного альтернативного варианта выбора для игрока, который и предлагается ведущим. Поэтому для того, чтобы задачи были аналогичными, в случае 4 дверей ведущий должен открывать 2 двери, в случае 5 дверей - 3, и так далее, чтобы всегда оставалась одна неоткрытая дверь кроме той, которую изначально выбрал игрок. Если ведущий будет открывать меньшее количество дверей, то задача уже не будет аналогична оригинальной задаче Монти Холла.

Следует отметить, что в случае множества дверей, даже если ведущий будет оставлять закрытой не одну дверь, а несколько, и предлагать игроку выбрать одну из них, то при смене первоначального выбора шансы игрока выиграть автомобиль всё равно будут увеличиваться, хотя и не столь значительно. Например, рассмотрим ситуацию, когда игрок выбирает одну дверь из ста, и затем ведущий открывает только одну дверь из оставшихся, предлагая игроку изменить свой выбор. При этом шансы на то, что автомобиль находится за первоначально выбранной игроком дверью, остаются прежними - 1/100, а для остальных дверей шансы изменяются: суммарная вероятность того, что автомобиль находится за одной из оставшихся дверей (99/100) распределяется теперь не на 99 дверей, а на 98. Поэтому вероятность нахождения автомобиля за каждой из этих дверей будет равна не 1/100, а 99/9800. Прирост вероятности составит примерно 0.01 %.

Дерево принятия решений

Дерево возможных решений игрока и ведущего, показывающее вероятность каждого исхода

Более формально сценарий игры может быть описан c помощью дерева принятия решений .

В первых двух случаях, когда игрок сначала выбрал дверь, за которой находится коза, изменение выбора приводит к выигрышу. В двух последних случаях, когда игрок сначала выбрал дверь с автомобилем, изменение выбора приводит к проигрышу.

Суммарная вероятность того, что изменение выбора приведёт к выигрышу, эквивалентна сумме вероятностей первых двух исходов, то есть . Соответственно, вероятность того, что отказ от изменения выбора приведёт к выигрышу, равна .

Существует простой способ убедиться в том, что изменение первоначального выбора приводит к выигрышу в двух случаях из трёх в среднем. Для этого можно сымитировать игру, описанную в задаче Монти Холла, с помощью игральных карт . Один человек (раздающий карты) при этом играет роль ведущего Монти Холла, а второй - роль игрока. Для игры берутся три карты, из которых одна изображает дверь с автомобилем (например, туз пик), а две других, одинаковых (например, две красные двойки) - двери с козами.

Ведущий выкладывает три карты рубашкой вверх, предлагая игроку взять одну из карт. После того, как игрок выберет карту, ведущий смотрит в две оставшиеся карты и открывает красную двойку. После этого открываются карты, оставшиеся у игрока и у ведущего, и если выбранная игроком карта - туз пик, то записывается очко в пользу варианта, когда игрок не меняет свой выбор, а если у игрока оказывается красная двойка, а у ведущего остаётся туз пик, то записывается очко в пользу варианта, когда игрок меняет свой выбор. Если провести множество таких раундов игры, то соотношение между очками в пользу двух вариантов достаточно хорошо отразит соотношение вероятностей этих вариантов. При этом оказывается, что число очков в пользу смены первоначального выбора примерно в два раза больше.

Такой эксперимент позволяет не только убедиться в том, что вероятность выигрыша при изменении выбора в два раза больше, но и хорошо иллюстрирует, почему так происходит. В тот момент, когда игрок выбрал себе карту, уже определено , находится ли в его руке туз пик или нет. Дальнейшее открытие ведущим одной из своих карт не меняет ситуации - игрок уже держит карту в руке, и она остаётся там независимо от действий ведущего. Вероятность же для игрока выбрать туз пик из трёх карт равна, очевидно, 1/3, и, таким образом, вероятность его не выбрать (и тогда игрок выиграет, если изменит первоначальный выбор) равна 2/3.

Доказательство с помощью таблицы

При проведении большого числа экспериментов машина должна обнаруживаться за каждой из дверей одинаковое количество раз, то есть очень близко к 1/3 от общего количества.

дверь 1 дверь 2 дверь 3
Выбор Машина Коза Открыта коза
Выбор Машина Открыта коза
Выбор Открыта коза Машина

По законам распределения вероятности вы выберете неправильную дверь в 2 случаях из 3. Это означает, что в 2 из 3 случаев вы получите машину просто изменив решение. Таблица показывает, что вы, скорее всего, ошибётесь при первом выборе и в этом случае вы попадаете в две другие строки таблицы. А здесь уже вам покажут, какую дверь нужно выбрать.

Проблема трёх заключенных

Другая формулировка парадокса была представлена Мартином Гарднером в колонке Математические игры , которую он вёл в журнале Scientific American , в .

Трое заключенных A , B и C приговорены к смертной казни, однако известно что один будет помилован. Приговор запрещает сообщать преступнику, будет ли он помилован или нет. A уговаривает охранника сказать, кого из двух других заключенных казнят. Так как вопрос не касается A , охранник решается сообщить, что казнят B . Как изменились вероятности казни A и C ? Или, проводя аналогию с проблемой Монти Холла, следует ли A поменяться местами с С , если у него есть такая возможность?

Ответ

В таблице приведены вероятности того, кто из заключенных будет помилован, до и после сообщения охранника.

Всем нам знакома ситуация, когда мы вместо трезвого расчета полагались на свою интуицию. Ведь нужно признать, что далеко не всегда можно все просчитать прежде чем сделать выбор. И как бы не лукавили люди, которые привыкли делать свой выбор только после тщательного анализа, им ни один раз это приходилось делать по принципу «наверное так». Одной из причин подобного действия может быть банальное отсутствие необходимого времени для оценки ситуации.

При этом выбор ждет сложившаяся ситуация прямо сейчас, и не позволяет уйти от ответа или действия. Но еще более каверзные ситуации для нас, которые в буквальном смысле вызывает судорогу мозга, - это разрушение уверенности в правильности выбора или в его вероятном превосходстве над иными вариантами, основанных на логических умозаключениях. На этом основаны все существующие парадоксы.

Парадокс в игре телешоу «Let’s Make a Deal»

Один из парадоксов, который вызывает жаркие споры среди любителей головоломок, называется парадоксом Монти Холла. Назван он в честь ведущего телешоу в США под названием «Let’s Make a Deal». На телешоу ведущий предлагает открыть одну из трех дверей, где в качестве приза находится автомобиль, в то время когда за другими двумя находятся по одной козе.

Участник игры делает свой выбор, но ведущий, зная где находится авто, открывает при этом не ту дверь, которую указал игрок, а другую, в которой находится коза и предлагает сменить первоначальный выбор игрока. Для дальнейшего разбора мы принимаем именно этот вариант поведения ведущего, хотя на самом деле он может периодически меняться. Другие варианты сценария развития мы просто перечислим ниже в статье.

В чем суть парадокса?

Еще раз по пунктам обозначим условия и изменим объекты игры для разнообразия на свои.

Участник игры находитесь в помещении с тремя банковскими ячейками. В одной из трех ячеек золотой слиток золота, в других двух по одной монете номиналом в 1 копейку СССР.

Итак, участник перед выбором и условия игры следующие:

  1. Участник может выбрать лишь одну из трех ячеек.
  2. Банкир знает изначально расположение слитка.
  3. Банкир всегда открывает ячейку с монетой, отличную от выбора игрока, и предлагает поменять выбор игроку.
  4. Игрок может в свою очередь поменять свой выбор или оставить первоначальный.

Что говорит интуиция?

Парадокс состоит в том, что для большинства людей, которые привыкли мыслить логически, шансы на выигрыш в случае смены своего первоначального выбора 50 на 50. Ведь, после того, как банкир открывает другую ячейку с монеткой, отличную от первоначального выбора игрока, остаются 2 ячейки, в одной из которых слиток золота, а в другой монетка. Игрок выигрывает слиток, если принимает предложение банкира сменить ячейку при условии, если в первоначально выбранной игроком ячейке не было слитка. И наоборот при данном условии - проигрывает, в случае если он откажется принять предложение.

Как подсказываем здравый смысл вероятность выбора слитка и выигрыша в таком случае 1/2. Но на самом деле ситуация иная! «Но как же так, здесь же все очевидно?» - спросите вы. Допустим вы выбрали ячейку № 1. Интуитивно да, неважно какой был у вас выбор первоначально, в конечном итоге у вас по факту перед выбором монета и слиток. И если изначально у вас была вероятность получения приза 1/3 , то в конечном итоге при открытии одной ячейки банкиром вы получаете вероятность 1/2. Казалось, вероятность увеличилась с 1/3 до 1/2. При внимательном разборе игры выясняется, что при смене решения вероятность увеличивается до 2/3 вместо интуитивных 1/2. Давайте рассмотрим за счет чего это происходит.

В отличие от интуитивного уровня, где наше сознание рассматривает событие после смены ячейки как нечто отдельное и забывает о первоначальном выборе, математика не разрывает эти два события, а наоборот сохраняет цепочку событий от начала до конца. Итак, как мы ранее и говорили, шансы на выигрыш при попадании сходу на слиток у нас 1/3, а вероятность, что мы выберем ячейку с монетой 2/3 (поскольку у нас есть один слиток и две монеты).

  1. Выбираем изначально банковскую ячейку со слитком - вероятность 1/3.
    • Если игрок изменяет свой выбор, принимая предложение банкира, - он проигрывает.
    • Если игрок не изменяет выбор, не принимая предложение банкира, - он выигрывает.
  2. Выбираем с первого раза банковскую ячейку с в монеткой - вероятность 2/3.
    • Если игрок поменяет свой выбор - выиграл.
    • Если игрок не изменяет выбор - проиграл.

Итак, для того, чтобы игрок ушел из банка со слитком золота в кармане, он должен выбрать изгначально проигрышную позицию с монеткой (вероятность 1/3), и после этого принять предложение банкира сменить ячейку.

Для того, чтобы понять данный парадокс и вырваться из оков шаблона первоначального выбора и оставшихся ячеек, давайте представим поведение игрока ровным счетом наоборот. Перед тем как банкир предложит ячейку для выбора, игрок мысленно точно определяется с тем, что он меняет свой выбор, и только после этого для него следует событие открытия лишней двери. Почему нет? Ведь открытая дверь не дает для него большей информации в такой логической последовательности. На первом этапе времени игрок разделяет ячейки на две разные области: первая - область с одной ячейкой с его первоначальным выбором, вторая с двумя оставшимися ячейками. Далее игроку предстоит сделать выбор между двумя областями. Вероятность достать из ячейки золотой слиток из первой области 1/3, из второй 2/3. Выбор следует за второй областью, в которой он может открыть две ячейки, первую откроет банкир, вторую он сам.

Существует еще более понятное объяснение парадокса Монти Холла. Для этого необходимо поменять формулировку задания. Банкир дает понять, что в одной из трех банковских ячеек находится золотой слиток. В первом случае он предлагает открыть одну из трех ячеек, а во втором - одновременно две. Что выберет игрок? Ну конечно сразу две, за счет повышения вероятности в два раза. И тот момент, когда банкир открыл ячейку с монеткой, это игроку на самом деле никак не помогает и не препятствует выбору, ведь банкир в любом случае покажет эту ячейку с монеткой, поэтому игрок может попросту игнорировать это действие. Со стороны игрока можно лишь только поблагодарить банкира за то, что он ему облегчил жизнь, и вместо двух ему пришлось открыть одну ячейку. Ну и окончательно можно избавится от синдрома парадокса если поставить себя на место банкира, который изначально знает, что игрок в двух из трех случаев указывает на неправильную дверь. Для банкира парадокс отсутствует как таковой, ведь он точно в такой инверсии событий уверен, что в случае смены событий игрок забирает золотой слиточек.

Парадокс Монти Холла явно не позволяет быть в выигрыше консерваторам, которые железобетонно стоят на своем первоначальном выборе и теряют свой шанс роста вероятности. Для консерваторов он так и останется 1/3. Для бдительных и рассудительных людей он вырастает до вышеуказанных 2/3.

Все приведенные утверждения актуальны лишь в соблюдении изначально оговоренных условий.

Что если увеличить количество ячеек?

Что если увеличить количество ячеек? Допустим вместо трех их будет 50. Золотой слиток будет лежать лишь только в одной ячейке, а в остальных 49 - монеты. Соответственно в отличии от классического случая вероятность попадания с ходу в цель 1/50 или 2% вместо 1/3, в то время как вероятность выбора ячейки с монетой составляет 98%. Далее ситуация развивается, как и в прежнем случае. Банкир предлагает открыть любую из 50 ячеек, участник выбирает. Допустим, игрок открывает ячейку под порядковым номеров 49. Банкир в свою очередь, как и в классическом варианте, не спешит выполнять желание игрока и открывает другие 48 ячеек с монетами и предлагает поменять свой выбор на оставшуюся под номером 50.

Здесь важно понимать, что банкир открывает именно 48 ячеек, а не 30, и оставляет при этом 2, включая выбранную игроком. Именно такой выбор позволяет парадоксу идти в разрез с интуицией. Как и в случае с классическим вариантом, открытие банкиром 48 ячеек оставляет только один единственный альтернативный вариант для выбора. Случай варианта меньшего открытия ячеек не позволяет поставить в один ряд задачу с классикой и ощутить парадокс.

Но раз уж мы и коснулись такого варианта, то давайте предположим, что банкир оставляет не одну, кроме выбранной игроком, а несколько ячеек. Представлено, как и прежде, 50 ячеек. Банкир после выбора игрока открывает только одну ячейку, оставляя при этом закрытыми 48 ячеек, включая выбранную игроком. Вероятность выбора слитка с первого раза 1/50. В сумме вероятность нахождения слитка в остальных ячейках 49/50, которая в свою очередь раскидывается не на 49, а на 48 ячеек. Не сложно посчитать, что вероятность нахождения слитка в таком варианте равна (49/50)/48=49/2900 . Вероятность пусть не на много, но все равно выше, чем 1/50 приблизительно на 1%.

Как мы и упоминали в самом начале ведущий Монти Холл в классическом сценарии игры с дверьми, козами и призовым авто может изменять условия игры и вместе с нем и вероятность выигрыша.

Математика парадокса

Могут ли математические формулы доказать увеличение вероятности при смене выбора?
Представим цепочку событий в виде множества, разделенного на две части, первую часть примем за X – это выбор на первом этапе ячейки сейфа игроком; и второе множество Y - оставшиеся две остальных ячейки. Вероятность (В) выигрыша для ячеек 2 и 3 можно выразить с помощью формул.

В(2) = 1/2 * 2/3 = 1/3
В(3) = 1/2 * 2/3= 1/3

Где 1/2 это вероятность, с которой банкир откроет ячейку 2 и 3 при условии, если игрок изначально выбрал ячейку без слитка.
Далее условная вероятность 1/2 при открытии банкиром ячейки с монетой изменяется на 1 и 0. Тогда формулы приобретают следующий вид:

В(2) = 0 * 2/3 = 0
B(3) = 1 * 2/3 = 1

Здесь мы наглядно видим, что вероятность выбора слитка в ячейке 3 - 2/3, а это чуть более 60 процентов.
Программист самого начального уровня может без труда проверить данный парадокс, написав программу, которая считает вероятность при смене выбора или наоборот и сверить результаты.

Объяснение парадокса в фильме 21 (Двадцать одно)

Наглядное разъяснение парадокса Монти Пола приводится в фильме «21» (Двадцать одно) , режиссера Роберта Лукетича. Профессор Микки Роса на лекции приводит пример из шоу Let’s Make a Deal и задает вопрос о распределении вероятности у студента Бена Кэмпбелла (актер и певец Джеймс Энтони), который дает правильный расклад и тем самым удивляет преподавателя.

Самостоятельное изучение парадокса

Для людей, которые хотят проверить результат самостоятельно на деле, но не имеющих математического базиса, мы предлагаем самостоятельно смоделировать игру, в которой вы будете ведущим, а кто-то будет игроком. Можете задействовать в этой игре детей, которые будут выбирать конфеты или фантики от них в заранее приготовленных картонных коробочках. При каждом выборе обязательно фиксируйте результат для дальнейшего подсчета.

Люди привыкли считать правильным то, что представляется очевидным. Оттого они часто попадают впросак, неверно оценив ситуацию, доверившись своей интуиции и не уделив время для того, чтобы критически осмыслить свой выбор и его последствия.

Монти наглядная иллюстрация неспособности человека взвесить свои шансы на успех в условиях выбора благоприятного исхода при наличии более чем одного неблагоприятного.

Формулировка парадокса Монти Холла

Итак, что же это за зверь такой? О чем, собственно, речь? Самым известным примером парадокса Монти Холла выступает телешоу, популярное в Америке середины прошлого века под названием «Давай заключим пари!». Кстати, именно благодаря ведущему этой викторины впоследствии и получил свое имя парадокс Монти Холла.

Игра состояла в следующем: участнику показывали три двери, с виду совершенно одинаковые. Однако за одной из них игрока ждал дорогой новый автомобиль, а вот за двумя другими в нетерпении томилось по козе. Как это обычно бывает в случае телевикторин, что находилось за выбранной конкурсантом дверью, то и становилось его выигрышем.

В чем же состоит хитрость?

Но не все так просто. После того как выбор был сделан, ведущий, зная, где сокрыт главный приз, открывал одну из оставшихся двух дверей (конечно, ту самую, за которой притаилось парнокопытное), а затем спрашивал игрока, не желает ли тот изменить свое решение.

Парадокс Монти Холла, сформулированный учеными в 1990 году, заключается в том, что, вопреки интуиции, подсказывающей, что нет никакой разницы в принятии на основании вопроса ведущего решения, нужно согласиться изменить свой выбор. Если хочется заполучить отличную машину, естественно.

Как это работает?

Причин, по которым людям не захочется отказываться от своего выбора, несколько. Интуиция и простая (но неверная) логика говорят, что от этого решения ничего не зависит. Более того, далеко не каждому захочется идти на поводу у другого - это же самая настоящая манипуляция, разве не так? Нет, не так. Но если бы все было сразу интуитивно понятно, то и не стали бы называть. Нет ничего странного в том, чтобы сомневаться. Когда данную головоломку впервые опубликовали в одном из крупных журналов, тысячи читателей, в том числе и признанные математики, прислали в редакцию письма, в которых утверждали, что напечатанный в номере ответ не соответствует действительности. Если существование теории вероятностей не было новостью для человека, попавшего на шоу, то возможно, он бы смог разгадать эту задачу. И тем самым увеличить шансы на победу. На самом деле объяснение парадокса Монти Холла сводится к несложной математике.

Объяснение первое, посложнее

Вероятность того, что приз находится за той дверью, которая была избрана изначально - один из трех. Шанс же обнаружить его за одной из двух оставшихся равен двум из трех. Логично, не так ли? Теперь, после того как одна из этих дверей оказывается открытой, и за ней обнаруживается коза, во втором множестве (том, которое соответствует 2/3 шанса на успех) остается только один вариант. Значение этого варианта остается прежним, и оно равно двум из трех. Таким образом, становится очевидно, что, изменив свое решение, игрок увеличит вероятность выигрыша вдвое.

Объяснение номер два, попроще

После такого трактования решения многие все равно настаивают на том, что смысла в этом выборе нет, ведь варианта всего два и один из них точно выигрышный, а другой однозначно ведет к поражению.

Но у теории вероятностей на данную проблему свой взгляд. И это становится еще яснее, если представить себе, что дверей изначально не три, а, скажем, сто. В таком случае возможность угадать, где находится приз, с первого раза составляет всего лишь один к девяносто девяти. Теперь участник делает свой выбор, а Монти исключает девяносто восемь дверей с козами, оставляя лишь две, одну из которых выбрал игрок. Таким образом, вариант, выбранный изначально, сохраняет шансы на выигрыш равные 1/100, а вторая предложенная возможность - 99/100. Выбор должен быть очевиден.

Существуют ли опровержения?

Ответ прост: нет. Ни одного достаточно обоснованного опровержения парадокса Монти Холла не существует. Все "разоблачения", которые можно обнаружить в Сети, сводятся к непониманию принципов математики и логики.

Для каждого, кто хорошо знаком с математическими принципами, неслучайность вероятностей абсолютно очевидна. Не соглашаться с ними может только тот, кто не понимает, как устроена логика. Если все вышесказанное до сих пор звучит неубедительно - обоснование парадокса было проверено и подтверждено на известной передаче «Разрушители легенд», а кому еще поверить, как не им?

Возможность убедиться наглядно

Хорошо, пусть все это звучит убедительно. Но ведь это только теория, можно ли как-то посмотреть на работу этого принципа в действии, а не только на словах? Во-первых, живых людей никто не отменял. Найдите напарника, который возьмет на себя роль ведущего и поможет разыграть вышеописанный алгоритм в реальности. Для удобства можно взять коробки, ящики или вовсе рисовать на бумаге. Повторив процесс несколько десятков раз, сравните число выигрышей в случае смены первоначального выбора с тем, сколько побед принесло упрямство, и все станет ясно. А можно поступить еще проще и воспользоваться Интернетом. В Сети существует немало симуляторов парадокса Монти Холла, в них можно проверить все самому и без лишнего реквизита.

Какой толк от этих знаний?

Может показаться, что это просто очередная головоломка, призванная напрячь мозги, и служит она лишь развлекательным целям. Однако свое практическое применение парадокс Монти Холла находит в первую очередь в азартных играх и различных тотализаторах. Тем, кто имеет большой опыт, прекрасно известны распространенные стратегии увеличения шансов на обнаружение валуйной ставки (от английского слова value, что буквально означает "ценность" - такой прогноз, который сбудется с большей вероятностью, чем это было оценено букмекерами). И одна из таких стратегий напрямую задействует парадокс Монти Холла.

Пример в работе с тотализатором

Спортивный пример будет мало отличаться от классического. Допустим, есть три команды из первого дивизиона. В три ближайших дня каждая из этих команд должна сыграть по одному решающему матчу. Та из них, что по итогам матча наберет больше очков, чем две другие, останется в первом дивизионе, остальные же будут вынуждены его покинуть. Предложение букмекера простое: нужно поставить на сохранение позиций одного из этих футбольных клубов, при этом коэффициенты ставок равны.

Для удобства принимаются такие условия, при которых соперники участвующих в выборе клубов примерно равны по силе. Таким образом, однозначно определить фаворита до начала игр не получится.

Тут нужно вспомнить историю про коз и автомобиль. Каждая из команд имеет шанс остаться на своем месте в одном случае из трех. Выбирается любая из них, на нее делается ставка. Пусть это будет "Балтика". По результатам первого дня один из клубов проигрывает, а двоим сыграть еще только предстоит. Это та самая "Балтика" и, скажем, "Шинник".

Большинство сохранит свою первоначальную ставку - в первом дивизионе останется "Балтика". Но следует помнить, что ее шансы остались прежними, а вот шансы "Шинника" удвоились. Поэтому логично сделать еще одну ставку, более крупную, на победу "Шинника".

Наступает следующий день, и матч с участием "Балтики" проходит вничью. Следующим играет "Шинник", и его игра заканчивается победой со счетом 3:0. Выходит, что именно он останется в первом дивизионе. Поэтому, хоть первая ставка на "Балтику" и теряется, но эту потерю перекрывает прибыль на новой ставке на "Шинник".

Можно предположить, и большинство так и поступит, что выигрыш "Шинника" - всего лишь случайность. На самом же деле принимать вероятность за случайность - крупнейшая ошибка для человека, участвующего в спортивных тотализаторах. Ведь профессионал всегда скажет, что любая вероятность выражается прежде всего в четких математических закономерностях. Если знать основы этого подхода и все связанные с ним нюансы, то риски потери денег сведутся к минимуму.

Польза в прогнозировании экономических процессов

Итак, в ставках на спорт парадокс Монти Холла знать просто необходимо. Но одними тотализаторами область его применения не ограничивается. Теория вероятностей всегда тесно связана со статистикой, оттого в политике и экономике понимание принципов парадокса не менее важно.

В условиях экономической неопределенности, с которой часто имеют дело аналитики, нужно помнить следующий проистекающий из решения задачи вывод: не обязательно точно знать единственно верное решение. Шансы на удачный прогноз всегда повышаются, если знать, чего точно не произойдет. Собственно, это и есть самый полезный вывод из парадокса Монти Холла.

Когда мир стоит на пороге экономических потрясений, политики всегда стараются угадать нужный вариант действий, чтобы максимально снизить последствия кризиса. Возвращаясь к предыдущим примерам, в сфере экономики задачу можно описать так: перед руководителями стран есть три двери. Одна ведет к гиперинфляции, вторая к дефляции, а третья - к заветному умеренному росту экономики. Но как нащупать верный ответ?

Политики утверждают, что те или иные их действия приведут к увеличению рабочих мест и росту экономики. Но ведущие экономисты, опытные люди, среди которых даже лауреаты Нобелевской премии, наглядно демонстрируют им, что один из этих вариантов точно не приведет к желаемому результату. Станут ли после этого политики менять свой выбор? Крайне маловероятно, так как в этом отношении они мало чем отличаются от тех же участников телешоу. Поэтому вероятность ошибки только увеличится при увеличении числа советчиков.

Исчерпывается ли этим информация по теме?

На самом деле до сих пор здесь рассматривался только "классический" вариант парадокса, то есть та ситуация, при которой ведущий точно знает, за какой из дверей находится приз, и открывает только дверь с козой. Но существуют и другие механизмы поведения ведущего, в зависимости от которых принцип работы алгоритма и результат его выполнения будут отличаться.

Влияние поведения ведущего на парадокс

Итак, что же может сделать ведущий, чтобы изменить ход событий? Допустим разные варианты.

Так называемый "Дьявольский Монти" - ситуация, в которой ведущий всегда предложит игроку поменять свой выбор при условии, что он был изначально верным. В этом случае изменение решения всегда приведет к поражению.

Напротив, "Ангельским Монти" называется похожий принцип поведения, но в том случае, если выбор игрока был изначально неверным. Логично, что в такой ситуации изменение решения приведет к победе.

Если же ведущий открывает двери наугад, не имея представления о том, что скрыто за каждой из них, то шансы выиграть всегда будут равны пятидесяти процентам. При этом за открытой ведущим дверью может оказаться и автомобиль.

Ведущий может 100 % открыть дверь с козой, если игрок выбрал автомобиль, и с 50 % вероятностью в случае, если игрок выбрал козу. При таком алгоритме действий, если игрок изменит выбор, то всегда будет в выигрыше в одном случае из двух.

Когда игра повторяется вновь и вновь, а вероятность того, что выигрышной окажется определенная дверь, всегда произвольна (так же как и то, какую дверь откроет ведущий, при этом ему известно, где скрывается автомобиль, и он всегда открывает дверь с козой и предлагает изменить выбор) - шанс победить всегда будет равен одному из трех. Это называется равновесием Нэша.

Равно как и в таком же случае, но при условии, что ведущий не обязан открывать одну из дверей вовсе — вероятность победы будет все так же равна 1/3.

В то время как классическая схема проверяется довольно легко, эксперименты с другими возможными алгоритмами поведения ведущего произвести на практике намного сложнее. Но при должной дотошности экспериментатора возможно и такое.

И все же, к чему все это?

Понимание механизмов действий любых логических парадоксов очень полезно для человека, его мозга и осознания того, как на самом деле может быть устроен мир, насколько его устройство может отличаться от привычного представления индивида о нем.

Чем больше человек знает о том, как работает то, что окружает его в повседневной жизни и о чем он вовсе не привык задумываться, тем лучше работает его сознание, и тем эффективнее он может быть в своих поступках и устремлениях.

Парадокс Монти Холла стал все чаще появляться на сайтах букмекерской тематики. Что же это такое и можно ли это использовать игроку в своих интересах?

Что такое парадокс Монти Холла

Парадокс Монти Холла - это задача из теории вероятности. Свою популярность приобрела благодаря американской телепередаче, где игроку предстоит открыть одну из трех дверей. Естественно приз только за одной дверью (машина), за двумя другими коза (шоу как-никак). Сначала игрок выбирает дверь. Она пока не открывается. Осталось две двери. Из этих двух дверей ведущий должен открыть ту, за которой коза. В итоге остается две неоткрытых двери, одна из которых та, что выбрал игрок. За одной коза, за другой автомобиль. Ведущий предлагает поменять игроку свой первоначальный выбор и открыть другую дверь. Что произойдет с шансами игрока выиграть приз, если он поменяет решение, и есть ли смысл это делать?

Если игрок меняет свой выбор, то он выигрывает с вероятностью 66.6%. Если остается при своем первоначальном мнении, шанс увидеть автомобиль ограничится 33.7%. В этом и заключается парадокс. Вроде бы всегда остается две двери, в которых один приз, а значит и вероятность выигрыша (меняй/не меняй) 50%. Но на деле все совсем по-другому. Если бы ведущий сразу открыл дверь с козой, а потом предложил игроку выбрать одну из двух дверей, то шанс действительно был бы 50%. Но сначала игрок делает свой выбор и вероятность выигрыша первоначально выбранной двери составляет 1/3.

При многократном повторении этого выбора его вероятность всегда будет оставаться на уровне 1/3 независимо ни от каких дальнейших действий ведущего либо самого игрока. Соответственно на две оставшиеся двери, всегда будет оставаться вероятность 2/3. А т.к. ведущий из этих двух дверей всегда оставляет одну, то она принимает на себя величину этой вероятности 2/3.

Вот и получается, первоначальный выбор игрока будет вести к выигрышу в трети всех случаев, а смена решения - к двум третям . Потому эта задача и называется парадоксом, что не поддается логике и здравому смыслу. Мозг человека привык работать шаблонно, потому и имеют место оптические обманы, иллюзии, парадоксы. Это не более, чем неосведомленность человека в конкретном вопросе. Даже написанное выше логическое объяснение задачи принимается не каждым, и приходится использовать более доступный метод просветления.

Представим данную задачу немного в другом, более расширенном формате. Дверей не 3, а 10, а условия все те же - игрок выбирает одну дверь, а ведущий открывает все двери и оставляет опять же одну. Ведущий может открыть только двери с козой. Т.е. игрок снова стоит перед выбором - дверь с козой/дверь с автомобилем. Здесь уже условия более понятны для понимания среднестатистическому человеку.

Понятно, что изначально выбрать дверь с призом очень трудно, а точнее вероятность составляет 1/10. И логично, что скорее всего автомобиль будет за оставшейся из 9 дверей. А т.к. ведущий открывает только невыигрышные, то дверь, которая останется не открытой после ведущего и будет предложена игроку, и будет являться дверью с призом. Если и такая формулировка вызвала трудности у человека, то можно условия упрощать еще больше, пока, как говорится, не дойдет. Это не признак большого или малого ума человека, скорее это отличный тест предмет "гуманитарий вы или технарь". Варианты с двумя, десятью, тысячами и т.д. дверями идентичны по своей сути, но различаются по трудности восприятия. Чем меньше дверей, тем легче сбить с толку человека.

Появление парадокса Монти Холла на сайтах, посвященных различным стратегиям, скорее радует, чем огорчает, особенно букмекеров. Правда пока и значение парадоксу Монти Холла придается исключительно прикладное. Это скорее как наглядный пример, что не все, что видишь, так и есть на самом деле. Что в тех же коэффициентах букмекера может быть заложено не только реальное распределение сил на основе статистики и текущих новостей из стана команд. Игроки также могут двигать линию и не основываясь на объективные причины. Тут может иметь место и обычный стадный рефлекс(), и договорняки. Да просто одна большая ставка на неперегруженное событие может сдвинуть линию.

Хотя встречаются и уникумы, утверждающие, что данный парадокс легко можно применить и в ставках на спорт. К сожалению, это утверждения безо всяких доказательств. Представим парадокс Монти Холла в условиях ставок на спорт. Для начала нужно найти событие с равными тремя шансами на успех . Бывают и такие, хоть и редко. Встречается линия на футбол, где на победу одной команды, ничью и другой команды кэфы 2.7 - ровная линия до невозможности. Нам нужно выбрать свой вариант. Затем требуется, чтобы на определенном этапе одно событие отпало, и осталось два, наиболее вероятных. До конца матча нельзя откинуть ни одно событие, пусть даже оно и маловероятно.

На долгом отрезке пути оно обязательно сыграет и даст свой перекос в статистику. Но, даже если представить, что не сыграет, то на этапе, когда останется два варианта, эти варианты уже будут иметь значения, насоразмерные с изначальными. А все потому, что букмекер двигает коэффициенты в течение матча . Грубо говоря, когда придется выбирать из двух дверей, это уже будет не коза и машина, а коза и велосипед. Коза - это ноль, проигрыш - никуда не денется. А автомобиль превратится из кэфа 2.7 в велосипед с гораздо меньшим коэффициентом.

В итоге смена первоначального решения хоть и может дать увеличение процента выигрыша, но сам выигрыш будет иметь уже совсем другую ценность. Т.е. в парадоксе Монти Холла начальные условия не меняются, а в ставках на спорт меняются. Отсюда и его неприменимость в борьбе с букмекерами. А с другой стороны, кто знает? Может и здесь найдется какой-нибудь парадокс, просто его еще никто не видит.

Вывод

Мы продолжаем настоятельно рекомендовать пользоваться . Высокорисковые финансовые стратегии оставьте для казино или тренировочных игровых счетов. Для стабильного заработка на ставках нужна правильная , а не всевозможные вариации КАК сделать ставку, не понимая НА ЧТО .

Формулировка

Наиболее популярной является задача с дополнительным условием № 6 из таблицы - участнику игры заранее известны следующие правила:

  • автомобиль равновероятно размещен за любой из 3 дверей;
  • ведущий в любом случае обязан открыть дверь с козой и предложить игроку изменить выбор, но только не дверь, которую выбрал игрок;
  • если у ведущего есть выбор, какую из 2 дверей открыть, он выбирает любую из них с одинаковой вероятностью.

В нижеследующем тексте обсуждается задача Монти Холла именно в этой формулировке.

Разбор

При решении этой задачи обычно рассуждают примерно так: ведущий всегда в итоге убирает одну проигрышную дверь, и тогда вероятности появления автомобиля за двумя не открытыми становятся равны 1/2, вне зависимости от первоначального выбора.

Вся суть в том, что своим первоначальным выбором участник делит двери: выбранная A и две другие - B и C . Вероятность того, что автомобиль находится за выбранной дверью = 1/3, того, что за другими = 2/3.

Для каждой из оставшихся дверей сложившаяся ситуация описывается так:

P(B) = 2/3*1/2 = 1/3

P(C) = 2/3*1/2 = 1/3

Где 1/2 - условная вероятность нахождения автомобиля именно за данной дверью при условии, что автомобиль не за дверью, выбранной игроком.

Ведущий, открывая одну из оставшихся дверей, всегда проигрышную, сообщает тем самым игроку ровно 1 бит информации и меняет условные вероятности для B и C соответственно на "1" и "0".

В результате выражения принимают вид:

P(B) = 2/3*1 = 2/3

Таким образом, участнику следует изменить свой первоначальный выбор - в этом случае вероятность его выигрыша будет равна 2/3.

Одним из простейших объяснений является следующее: если вы меняете дверь после действий ведущего, то вы выигрываете, если изначально выбрали проигрышную дверь (тогда ведущий откроет вторую проигрышную и вам останется поменять свой выбор чтобы победить). А изначально выбрать проигрышную дверь можно 2 способами (вероятность 2/3), т.е. если вы меняете дверь, вы выигрываете с вероятностью 2/3.

Этот вывод противоречит интуитивному восприятию ситуации большинством людей , поэтому описанная задача и называется парадоксом Монти Холла , т.е. парадоксом в бытовом смысле.

А интуитивное восприятие таково: открывая дверь с козой, ведущий ставит перед игроком новую задачу, никак не связанную с предыдущим выбором - ведь коза за открытой дверью окажется независимо от того, выбрал игрок перед этим козу или автомобиль. После того, как третья дверь открыта, игроку предстоит сделать выбор заново - и выбрать либо ту же дверь, которую он выбрал раньше, либо другую. То есть, при этом он не меняет свой предыдущий выбор, а делает новый. Математическое же решение рассматривает две последовательные задачи ведущего, как связанные друг с другом.

Однако следует брать во внимание тот фактор из условия, что ведущий откроет дверь с козой именно из двух оставшихся, а не дверь, выбранную игроком. Следовательно, оставшаяся дверь имеет больше шансов на автомобиль, так как она не была выбрана ведущим. Если рассмотреть тот случай, когда ведущий, зная, что за выбранной игроком дверью находится коза, все же откроет эту дверь, этим самым он нарочно уменьшит шансы игрока выбрать правильную дверь, т.к. вероятность правильного выбора будет уже 1/2. Но подобного рода игра будет уже по другим правилам.

Дадим еще одно объяснение. Предположим, что вы играете по описанной выше системе, т.е. из двух оставшихся дверей вы всегда выбираете дверь, отличную от вашего первоначального выбора. В каком случае вы проиграете? Проигрыш наступит тогда, и только тогда, когда с самого начала вы выбрали дверь, за которой находится автомобиль, ибо впоследствии вы неизбежно перемените свое решение в пользу двери с козой, во всех остальных случаях вы выиграете, т.е., если с самого начала ошиблись с выбором двери. Но вероятность с самого начала выбрать дверь с козой 2/3, вот и получается, что для победы нужна ошибка, вероятность которой в два раза больше правильного выбора.

Упоминания

  • В фильме Двадцать одно преподаватель, Мики Роса, предлагает главному герою, Бену, решить задачу: за тремя дверьми два самоката и один автомобиль, необходимо угадать дверь с автомобилем. После первого выбора Мики предлагает изменить выбор. Бен соглашается и математически аргументирует свое решение. Так он непроизвольно проходит тест в команду Мики.
  • В романе Сергея Лукьяненко «Недотёпа » главные герои при помощи такого приёма выигрывают карету и возможность продолжить своё путешествие.
  • В телесериале «4исла » (13 эпизод 1 сезона «Man Hunt») один из главных героев, Чарли Эппс, на популярной лекции по математике объясняет парадокс Монти Холла, наглядно иллюстрируя его с помощью маркерных досок, на обратных сторонах которых нарисованы козы и автомобиль. Чарли действительно находит автомобиль, изменив выбор. Однако следует отметить, что он проводит всего один эксперимент, в то время как преимущество стратегии смены выбора является статистическим, и для корректной иллюстрации следует проводить серию экспериментов.
  • Парадокс Монти Холла обсуждается в дневнике героя повести Марка Хэддона «Загадочное ночное убийство собаки».
  • Парадокс Монти Холла проверялся Разрушителями Легенд

См. также

  • Парадокс Бертрана (англ.)

Ссылки

  • Интерактивный прототип: для тех, кто хочет надурить (генерация происходит после первого выбора)
  • Интерактивный прототип: реальный прототип игры (генерация карточек происходит до выбора, работа прототипа прозрачна)
  • Объясняющий видеоролик на сайте Smart Videos .ru
  • Weisstein, Eric W. Парадокс Монти Холла (англ.) на сайте Wolfram MathWorld .
  • Парадокс Монти Холла на сайте телешоу Let’s Make a deal
  • Отрывок из книги С.Лукьяненко , в котором используется парадокс Монти Холла
  • Ещё одно решение по Байесу Ещё одно решение по Байесу на форуме Новосибирского Государственного Университета

Литература

  • Гмурман В.Е. Теория вероятностей и математическая статистика, - М .: Высшее образование. 2005
  • Gnedin, Sasha "The Mondee Gills Game." журнал The Mathematical Intelligencer , 2011 http://www.springerlink.com/content/8402812734520774/fulltext.pdf
  • Parade Magazine от 17 февраля .
  • vos Savant, Marilyn. Колонка «Ask Marilyn», журнал Parade Magazine от 26 февраля .
  • Bapeswara Rao, V. V. and Rao, M. Bhaskara. «A three-door game show and some of its variants». Журнал The Mathematical Scientist , 1992, № 2.
  • Tijms, Henk. Understanding Probability, Chance Rules in Everyday Life . Cambridge University Press, New York, 2004. (ISBN 0-521-54036-4)

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Парадокс Монти Холла" в других словарях:

    В поисках автомобиля, игрок выбирает дверь 1. Тогда ведущий открывает 3 ю дверь, за которой находится коза, и предлагает игроку изменить свой выбор на дверь 2. Стоит ли ему это делать? Парадокс Монти Холла одна из известных задач теории… … Википедия

    - (Парадокс галстуков) известный парадокс, похожий на задачу о двух конвертах, также демонстрирующий особенности субъективного восприятия теории вероятностей. Суть парадокса: двое мужчин дарят друг другу на Рождество галстуки, купленные их… … Википедия