Линейная регрессия. Использование метода наименьших квадратов (МНК)

Выбрав вид функции регрессии, т.е. вид рассматриваемой модели зависимости Y от Х (или Х от У), например, линейную модель y x =a+bx, необходимо определить конкретные значения коэффициентов модели.

При различных значениях а и b можно построить бесконечное число зависимостей вида y x =a+bx т.е на координатной плоскости имеется бесконечное количество прямых, нам же необходима такая зависимость, которая соответствует наблюдаемым значениям наилучшим образом. Таким образом, задача сводится к подбору наилучших коэффициентов.

Линейную функцию a+bx ищем, исходя лишь из некоторого количества имеющихся наблюдений. Для нахождения функции с наилучшим соответствием наблюдаемым значениям используем метод наименьших квадратов.

Обозначим: Y i - значение, вычисленное по уравнению Y i =a+bx i . y i - измеренное значение, ε i =y i -Y i - разность между измеренными и вычисленными по уравнению значениям, ε i =y i -a-bx i .

В методе наименьших квадратов требуется, чтобы ε i , разность между измеренными y i и вычисленными по уравнению значениям Y i , была минимальной. Следовательно, находим коэффициенты а и b так, чтобы сумма квадратов отклонений наблюдаемых значений от значений на прямой линии регрессии оказалась наименьшей:

Исследуя на экстремум эту функцию аргументов а и с помощью производных, можно доказать, что функция принимает минимальное значение, если коэффициенты а и b являются решениями системы:

(2)

Если разделить обе части нормальных уравнений на n, то получим:

Учитывая, что (3)

Получим , отсюда , подставляя значение a в первое уравнение, получим:

При этом b называют коэффициентом регрессии; a называют свободным членом уравнения регрессии и вычисляют по формуле:

Полученная прямая является оценкой для теоретической линии регрессии. Имеем:

Итак, является уравнением линейной регрессии.

Регрессия может быть прямой (b>0) и обратной (b Пример 1. Результаты измерения величин X и Y даны в таблице:

x i -2 0 1 2 4
y i 0.5 1 1.5 2 3

Предполагая, что между X и Y существует линейная зависимость y=a+bx, способом наименьших квадратов определить коэффициенты a и b.

Решение. Здесь n=5
x i =-2+0+1+2+4=5;
x i 2 =4+0+1+4+16=25
x i y i =-2 0.5+0 1+1 1.5+2 2+4 3=16.5
y i =0.5+1+1.5+2+3=8

и нормальная система (2) имеет вид

Решая эту систему, получим: b=0.425, a=1.175. Поэтому y=1.175+0.425x.

Пример 2. Имеется выборка из 10 наблюдений экономических показателей (X) и (Y).

x i 180 172 173 169 175 170 179 170 167 174
y i 186 180 176 171 182 166 182 172 169 177

Требуется найти выборочное уравнение регрессии Y на X. Построить выборочную линию регрессии Y на X.

Решение. 1. Проведем упорядочивание данных по значениям x i и y i . Получаем новую таблицу:

x i 167 169 170 170 172 173 174 175 179 180
y i 169 171 166 172 180 176 177 182 182 186

Для упрощения вычислений составим расчетную таблицу, в которую занесем необходимые численные значения.

x i y i x i 2 x i y i
167 169 27889 28223
169 171 28561 28899
170 166 28900 28220
170 172 28900 29240
172 180 29584 30960
173 176 29929 30448
174 177 30276 30798
175 182 30625 31850
179 182 32041 32578
180 186 32400 33480
∑x i =1729 ∑y i =1761 ∑x i 2 299105 ∑x i y i =304696
x=172.9 y=176.1 x i 2 =29910.5 xy=30469.6

Согласно формуле (4), вычисляем коэффициента регрессии

а по формуле (5)

Таким образом, выборочное уравнение регрессии имеет вид y=-59.34+1.3804x.
Нанесем на координатной плоскости точки (x i ; y i) и отметим прямую регрессии.


Рис 4

На рис.4 видно, как располагаются наблюдаемые значения относительно линии регрессии. Для численной оценки отклонений y i от Y i , где y i наблюдаемые, а Y i определяемые регрессией значения, составим таблицу:

x i y i Y i Y i -y i
167 169 168.055 -0.945
169 171 170.778 -0.222
170 166 172.140 6.140
170 172 172.140 0.140
172 180 174.863 -5.137
173 176 176.225 0.225
174 177 177.587 0.587
175 182 178.949 -3.051
179 182 184.395 2.395
180 186 185.757 -0.243

Значения Y i вычислены согласно уравнению регрессии.

Заметное отклонение некоторых наблюдаемых значений от линии регрессии объясняется малым числом наблюдений. При исследовании степени линейной зависимости Y от X число наблюдений учитывается. Сила зависимости определяется величиной коэффициента корреляции.

Находит широкое применение в эконометрике в виде четкой экономической интерпретации ее параметров.

Линейная регрессия сводится к нахождению уравнения вида

или

Уравнение вида позволяет по заданным значениям параметра х иметь теоретические значения результативного признака, подставляя в него фактические значения фактора х .

Построение линейной регрессии сводится к оценке ее параметров — а и в. Оценки параметров линейной регрессии могут быть найдены разными методами.

Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов (МНК).

МНК позволяет получить такие оценки параметров а и в, при которых сумма квадратов отклонений фактических значений ре-зультативного признака (у) от расчетных (теоретических) ми-нимальна:

Чтобы найти минимум функции, надо вычислить част-ные производные по каждому из параметров а и b и приравнять их к нулю.

Обозначим через S, тогда:

Преобразуя формулу, получим следующую систему нормальных уравнений для оценки параметров а и в :

Решая систему нормальных уравнений (3.5) либо методом последовательного исключения переменных, либо методом определителей, найдем искомые оценки параметров а и в.

Параметр в называется коэффициентом регрессии. Его величина показывает среднее изменение результата с изменением фактора на одну единицу.

Уравнение регрессии всегда дополняется показателем тесноты связи. При использовании линейной регрессии в качестве такого показателя выступает линейный коэффициент корреляции . Существуют разные модификации формулы линейного коэффициента корреляции. Некоторые из них приведены ниже:

Как известно, линейный коэффициент корреляции находится в границах: -1 1.

Для оценки качества подбора линейной функции рассчитывается квадрат

Линейного коэффициента корреляции называемый коэффициентом детерминации . Коэффициент детерминации характеризует долю дисперсии результативного признака у, объясняемую регрессией, в общей дисперсии результативного признака:

Соответственно величина 1 - характеризует долю диспер-сии у, вызванную влиянием остальных не учтенных в модели факторов.

Вопросы для самоконтроля

1. Суть метода наименьших квадратов?

2. Сколькими переменными предоставляется парная регрессия?

3. Каким коэффициентом определяется теснота связи между переменами?

4. В каких пределах определяется коэффициент детерминации?

5. Оценка параметра b в корреляционно-регрессионном анализе?

1. Кристофер Доугерти. Введение в эконометрию. - М.: ИНФРА - М, 2001 - 402 с.

2. С.А. Бородич. Эконометрика. Минск ООО «Новое знание» 2001.


3. Р.У. Рахметова Краткий курс по эконометрике. Учебное пособие. Алматы. 2004. -78с.

4. И.И. Елисеева.Эконометрика. - М.: «Финансы и статистика»,2002

5. Ежемесячный информационно-аналитический журнал.

Нелинейные экономические модели. Нелинейные модели регрессии. Преобразование переменных.

Нелинейные экономические модели..

Преобразование переменных.

Коэффициент эластичности.

Если между экономическими явлениями существуют нели-нейные соотношения, то они выражаются с помощью соответ-ствующих нелинейных функций: например, равносторонней ги-перболы , параболы второй степени и д.р.

Различают два класса нелинейных регрессий:

1. Регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам, например:

Полиномы различных степеней - , ;

Равносторонняя гипербола - ;

Полулогарифмическая функция - .

2. Регрессии, нелинейные по оцениваемым параметрам, например:

Степенная - ;

Показательная - ;

Экспоненциальная - .

Общая сумма квадратов отклонений индивидуальных значений результативного признака у от среднего значения вызвана влиянием множества причин. Условно разделим всю совокупность причин на две группы: изучаемый фактор х и прочие факторы.

Если фактор не оказывает влияния на результат, то линия регрес-сии на графике параллельна оси ох и

Тогда вся дисперсия результативного признака обусловлена воздействием прочих факторов и общая сумма квадратов отклонений совпадет с остаточной. Если же прочие факторы не влияют на результат, то у связан с х функционально и остаточная сумма квадратов равна нулю. В этом случае сумма квадратов отклонений, объясненная регрессией, совпадает с общей суммой квадратов.

Поскольку не все точки поля корреляции лежат на линии регрессии, то всегда имеет место их разброс как обусловленный вли-янием фактора х , т. е. регрессией у по х, так и вызванный действием прочих причин (необъясненная вариация). Пригод-ность линии регрессии для прогноза зависит от того, какая часть общей вариации признака у приходится на объясненную вариа-цию

Очевидно, что если сумма квадратов отклонений, обусловленная регрессией, будет больше остаточной суммы квадратов, то уравнение регрессии статистически значимо и фактор х оказывает существенное воздействие на результат у.

, т. е. с числом свободы независимого варьирования признака. Число степеней свободы связано с числом единиц совокупности n и с числом определяемых по ней констант. Применительно к исследуемой проблеме число степеней свободы должно показать, сколько независимых откло-нений из п

Оценка значимости уравнения регрессии в целом дается с по-мощью F -критерия Фишера. При этом выдвигается нулевая ги-потеза, что коэффициент регрессии равен нулю, т. е. b = 0, и следовательно, фактор х не оказывает влияния на результат у.

Непосредственному расчету F-критерия предшествует анализ дисперсии. Центральное место в нем занимает разложе-ние общей суммы квадратов отклонений переменной у от средне го значения у на две части - «объясненную» и «необъясненную»:

- общая сумма квадратов отклонений;

- сумма квадратов отклонения объясненная регрессией;

- остаточная сумма квадратов отклонения.

Любая сумма квадратов отклонений связана с числом степе-ней свободы, т. е. с числом свободы независимого варьирования признака. Число степеней свободы связано с числом единиц совокупности n и с числом определяемых по ней констант. Применительно к исследуемой проблеме число cтепеней свободы должно показать, сколько независимых откло-нений из п возможных требуется для образования данной суммы квадратов.

Дисперсия на одну степень свободы D .

F-отношения (F-критерий):

Ecли нулевая гипотеза справедлива , то факторная и остаточная дисперсии не отличаются друг от друга. Для Н 0 необходимо опровержение,чтобы факторная дисперсия превышала остаточную в несколько раз. Английским статистиком Снедекором раз-работаны таблицы критических значений F -отношений при разных уровняхсущественности нулевой гипотезы и различном числе степенейсвободы. Табличное значение F -критерия — это максимальная величина отношения дисперсий, которая может иметь место прислучайном их расхождении для данного уровня вероятности наличия нулевой гипотезы. Вычисленное значение F -отношения признается достоверным, если о больше табличного.

В этом случае нулевая гипотеза об отсутствии связи признаков отклоняется и делается вывод о существенности этой связи: F факт > F табл Н 0 отклоняется.

Если же величина окажется меньше табличной F факт ‹, F табл , то вероятность нулевой гипотезы выше заданного уровня и она не может быть отклонена без серьезного риска сделать неправильный вывод о наличии связи. В этом случае уравнение регрессии считается статистически незначимым. Н о не отклоняется.

Стандартная ошибка коэффициента регрессии

Для оценки существенности коэффициента регрессии его ве-личина сравнивается с его стандартной ошибкой, т. е. определяется фактическое значение t -критерия Стьюдентa: которое затем сравнивается с табличным значением при определенном уровне значимости и числе степеней свободы (n - 2).

Стандартная ошибка параметра а :

Значимость линейного коэффициента корреляции проверя-ется на основе величины ошибки коэффициента корреляции т r:

Общая дисперсия признака х :

Множественная линейная регрессия

Построение модели

Множественная регрессия представляет собой регрессию результативного признака с двумя и большим числом факторов, т. е. модель вида

Регрессия может дать хороший результат при модели-ровании, если влиянием других факторов, воздействующих на объект исследования, можно пренебречь. Поведение отдельных экономи-ческих переменных контролировать нельзя, т. е. не удается обес-печить равенство всех прочих условий для оценки влияния одно-го исследуемого фактора. В этом случае следует попытаться выявить влияние других факторов, введя их в модель, т. е. пост-роить уравнение множественной регрессии: y = a+b 1 x 1 +b 2 +…+b p x p + .

Основная цель множественной регрессии — построить модель с большим числом факторов, определив при этом влияние каждого из них в отдельности, а также совокупное их воздействие на моделируемый показатель. Спецификация модели включает в себя два круга вопросов: отбор фак-торов и выбор вида уравнения регрессии

Метод наименьших квадратов

Метод наименьших квадратов (МНК, OLS, Ordinary Least Squares ) - один из базовых методов регрессионного анализа для оценки неизвестных параметров регрессионных моделей по выборочным данным. Метод основан на минимизации суммы квадратов остатков регрессии.

Необходимо отметить, что собственно методом наименьших квадратов можно назвать метод решения задачи в любой области, если решение заключается или удовлетворяет некоторому критерию минимизации суммы квадратов некоторых функций от искомых переменных. Поэтому метод наименьших квадратов может применяться также для приближённого представления (аппроксимации) заданной функции другими (более простыми) функциями, при нахождении совокупности величин, удовлетворяющих уравнениям или ограничениям, количество которых превышает количество этих величин и т. д.

Сущность МНК

Пусть задана некоторая (параметрическая) модель вероятностной (регрессионной) зависимости между (объясняемой) переменной y и множеством факторов (объясняющих переменных) x

где - вектор неизвестных параметров модели

- случайная ошибка модели.

Пусть также имеются выборочные наблюдения значений указанных переменных. Пусть - номер наблюдения (). Тогда - значения переменных в -м наблюдении. Тогда при заданных значениях параметров b можно рассчитать теоретические (модельные) значения объясняемой переменной y:

Величина остатков зависит от значений параметров b.

Сущность МНК (обычного, классического) заключается в том, чтобы найти такие параметры b, при которых сумма квадратов остатков (англ. Residual Sum of Squares ) будет минимальной:

В общем случае решение этой задачи может осуществляться численными методами оптимизации (минимизации). В этом случае говорят о нелинейном МНК (NLS или NLLS - англ. Non-Linear Least Squares ). Во многих случаях можно получить аналитическое решение. Для решения задачи минимизации необходимо найти стационарные точки функции , продифференцировав её по неизвестным параметрам b, приравняв производные к нулю и решив полученную систему уравнений:

Если случайные ошибки модели имеют нормальное распределение , имеют одинаковую дисперсию и некоррелированы между собой, МНК-оценки параметров совпадают с оценками метода максимального правдоподобия (ММП) .

МНК в случае линейной модели

Пусть регрессионная зависимость является линейной:

Пусть y - вектор-столбец наблюдений объясняемой переменной, а - матрица наблюдений факторов (строки матрицы - векторы значений факторов в данном наблюдении, по столбцам - вектор значений данного фактора во всех наблюдениях). Матричное представление линейной модели имеет вид:

Тогда вектор оценок объясняемой переменной и вектор остатков регрессии будут равны

соответственно сумма квадратов остатков регрессии будет равна

Дифференцируя эту функцию по вектору параметров и приравняв производные к нулю, получим систему уравнений (в матричной форме):

.

Решение этой системы уравнений и дает общую формулу МНК-оценок для линейной модели:

Для аналитических целей оказывается полезным последнее представление этой формулы. Если в регрессионной модели данные центрированы , то в этом представлении первая матрица имеет смысл выборочной ковариационной матрицы факторов, а вторая - вектор ковариаций факторов с зависимой переменной. Если кроме того данные ещё и нормированы на СКО (то есть в конечном итоге стандартизированы ), то первая матрица имеет смысл выборочной корреляционной матрицы факторов, второй вектор - вектора выборочных корреляций факторов с зависимой переменной.

Немаловажное свойство МНК-оценок для моделей с константой - линия построенной регрессии проходит через центр тяжести выборочных данных, то есть выполняется равенство:

В частности, в крайнем случае, когда единственным регрессором является константа, получаем, что МНК-оценка единственного параметра (собственно константы) равна среднему значению объясняемой переменной. То есть среднее арифметическое, известное своими хорошими свойствами из законов больших чисел, также является МНК-оценкой - удовлетворяет критерию минимума суммы квадратов отклонений от неё.

Пример: простейшая (парная) регрессия

В случае парной линейной регрессии формулы расчета упрощаются (можно обойтись без матричной алгебры):

Свойства МНК-оценок

В первую очередь, отметим, что для линейных моделей МНК-оценки являются линейными оценками, как это следует из вышеприведённой формулы. Для несмещенности МНК-оценок необходимо и достаточно выполнения важнейшего условия регрессионного анализа : условное по факторам математическое ожидание случайной ошибки должно быть равно нулю. Данное условие, в частности, выполнено, если

  1. математическое ожидание случайных ошибок равно нулю, и
  2. факторы и случайные ошибки - независимые случайные величины.

Второе условие - условие экзогенности факторов - принципиальное. Если это свойство не выполнено, то можно считать, что практически любые оценки будут крайне неудовлетворительными: они не будут даже состоятельными (то есть даже очень большой объём данных не позволяет получить качественные оценки в этом случае). В классическом случае делается более сильное предположение о детерминированности факторов, в отличие от случайной ошибки, что автоматически означает выполнение условия экзогенности. В общем случае для состоятельности оценок достаточно выполнения условия экзогенности вместе со сходимостью матрицы к некоторой невырожденной матрице при увеличении объёма выборки до бесконечности.

Для того, чтобы кроме состоятельности и несмещенности , оценки (обычного) МНК были ещё и эффективными (наилучшими в классе линейных несмещенных оценок) необходимо выполнение дополнительных свойств случайной ошибки:

Данные предположения можно сформулировать для ковариационной матрицы вектора случайных ошибок

Линейная модель, удовлетворяющая таким условиям, называется классической . МНК-оценки для классической линейной регрессии являются несмещёнными , состоятельными и наиболее эффективными оценками в классе всех линейных несмещённых оценок (в англоязычной литературе иногда употребляют аббревиатуру BLUE (Best Linear Unbaised Estimator ) - наилучшая линейная несмещённая оценка; в отечественной литературе чаще приводится теорема Гаусса - Маркова). Как нетрудно показать, ковариационная матрица вектора оценок коэффициентов будет равна:

Обобщенный МНК

Метод наименьших квадратов допускает широкое обобщение. Вместо минимизации суммы квадратов остатков можно минимизировать некоторую положительно определенную квадратичную форму от вектора остатков , где - некоторая симметрическая положительно определенная весовая матрица. Обычный МНК является частным случаем данного подхода, когда весовая матрица пропорциональна единичной матрице. Как известно из теории симметрических матриц (или операторов) для таких матриц существует разложение . Следовательно, указанный функционал можно представить следующим образом , то есть этот функционал можно представить как сумму квадратов некоторых преобразованных «остатков». Таким образом, можно выделить класс методов наименьших квадратов - LS-методы (Least Squares).

Доказано (теорема Айткена), что для обобщенной линейной регрессионной модели (в которой на ковариационную матрицу случайных ошибок не налагается никаких ограничений) наиболее эффективными (в классе линейных несмещенных оценок) являются оценки т. н. обобщенного МНК (ОМНК, GLS - Generalized Least Squares) - LS-метода с весовой матрицей, равной обратной ковариационной матрице случайных ошибок: .

Можно показать, что формула ОМНК-оценок параметров линейной модели имеет вид

Ковариационная матрица этих оценок соответственно будет равна

Фактически сущность ОМНК заключается в определенном (линейном) преобразовании (P) исходных данных и применении обычного МНК к преобразованным данным. Цель этого преобразования - для преобразованных данных случайные ошибки уже удовлетворяют классическим предположениям.

Взвешенный МНК

В случае диагональной весовой матрицы (а значит и ковариационной матрицы случайных ошибок) имеем так называемый взвешенный МНК (WLS - Weighted Least Squares). В данном случае минимизируется взвешенная сумма квадратов остатков модели, то есть каждое наблюдение получает «вес», обратно пропорциональный дисперсии случайной ошибки в данном наблюдении: . Фактически данные преобразуются взвешиванием наблюдений (делением на величину, пропорциональную предполагаемому стандартному отклонению случайных ошибок), а к взвешенным данным применяется обычный МНК.

Некоторые частные случаи применения МНК на практике

Аппроксимация линейной зависимости

Рассмотрим случай, когда в результате изучения зависимости некоторой скалярной величины от некоторой скалярной величины (Это может быть, например, зависимость напряжения от силы тока : , где - постоянная величина, сопротивление проводника) было проведено измерений этих величин, в результате которых были получены значения и соответствующие им значения . Данные измерений должны быть записаны в таблице.

Таблица. Результаты измерений.

№ измерения
1
2
3
4
5
6

Вопрос звучит так: какое значение коэффициента можно подобрать, чтобы наилучшим образом описать зависимость ? Согласно МНК это значение должно быть таким, чтобы сумма квадратов отклонений величин от величин

была минимальной

Сумма квадратов отклонений имеет один экстремум - минимум, что позволяет нам использовать эту формулу . Найдём из этой формулы значение коэффициента . Для этого преобразуем её левую часть следующим образом:

Последняя формула позволяет нам найти значение коэффициента , что и требовалось в задаче.

История

До начала XIX в. учёные не имели определённых правил для решения системы уравнений , в которой число неизвестных меньше, чем число уравнений; до этого времени употреблялись частные приёмы, зависевшие от вида уравнений и от остроумия вычислителей, и потому разные вычислители, исходя из тех же данных наблюдений, приходили к различным выводам. Гауссу (1795) принадлежит первое применение метода, а Лежандр (1805) независимо открыл и опубликовал его под современным названием (фр. Méthode des moindres quarrés ) . Лаплас связал метод с теорией вероятностей , а американский математик Эдрейн (1808) рассмотрел его теоретико-вероятностные приложения . Метод распространён и усовершенствован дальнейшими изысканиями Энке , Бесселя , Ганзена и других.

Альтернативное использование МНК

Идея метода наименьших квадратов может быть использована также в других случаях, не связанных напрямую с регрессионным анализом. Дело в том, что сумма квадратов является одной из наиболее распространенных мер близости для векторов (евклидова метрика в конечномерных пространствах).

Одно из применений - «решение» систем линейных уравнений, в которых число уравнений больше числа переменных

где матрица не квадратная, а прямоугольная размера .

Такая система уравнений, в общем случае не имеет решения (если ранг на самом деле больше числа переменных). Поэтому эту систему можно «решить» только в смысле выбора такого вектора , чтобы минимизировать «расстояние» между векторами и . Для этого можно применить критерий минимизации суммы квадратов разностей левой и правой частей уравнений системы, то есть . Нетрудно показать, что решение этой задачи минимизации приводит к решению следующей системы уравнений

Метод наименьших квадратов (МНК, англ. Ordinary Least Squares, OLS ) - математический метод, применяемый для решения различных задач, основанный на минимизации суммы квадратов отклонений некоторых функций от искомых переменных. Он может использоваться для «решения» переопределенных систем уравнений (когда количество уравнений превышает количество неизвестных), для поиска решения в случае обычных (не переопределенных) нелинейных систем уравнений, для аппроксимации точечных значений некоторой функции. МНК является одним из базовых методов регрессионного анализа для оценки неизвестных параметров регрессионных моделей по выборочным данным.

Энциклопедичный YouTube

    1 / 5

    ✪ Метод наименьших квадратов. Тема

    ✪ Митин И. В. - Обработка результатов физ. эксперимента - Метод наименьших квадратов (Лекция 4)

    ✪ Метод наименьших квадратов, урок 1/2. Линейная функция

    ✪ Эконометрика. Лекция 5 .Метод наименьших квадратов

    ✪ Метод наименьших квадратов. Ответы

    Субтитры

История

До начала XIX в. учёные не имели определённых правил для решения системы уравнений , в которой число неизвестных меньше, чем число уравнений; до этого времени употреблялись частные приёмы, зависевшие от вида уравнений и от остроумия вычислителей, и потому разные вычислители, исходя из тех же данных наблюдений, приходили к различным выводам. Гауссу (1795) принадлежит первое применение метода, а Лежандр (1805) независимо открыл и опубликовал его под современным названием (фр. Méthode des moindres quarrés ) . Лаплас связал метод с теорией вероятностей , а американский математик Эдрейн (1808) рассмотрел его теоретико-вероятностные приложения . Метод распространён и усовершенствован дальнейшими изысканиями Энке , Бесселя , Ганзена и других.

Сущность метода наименьших квадратов

Пусть x {\displaystyle x} - набор n {\displaystyle n} неизвестных переменных (параметров), f i (x) {\displaystyle f_{i}(x)} , , m > n {\displaystyle m>n} - совокупность функций от этого набора переменных. Задача заключается в подборе таких значений x {\displaystyle x} , чтобы значения этих функций были максимально близки к некоторым значениям y i {\displaystyle y_{i}} . По существу речь идет о «решении» переопределенной системы уравнений f i (x) = y i {\displaystyle f_{i}(x)=y_{i}} , i = 1 , … , m {\displaystyle i=1,\ldots ,m} в указанном смысле максимальной близости левой и правой частей системы. Сущность МНК заключается в выборе в качестве «меры близости» суммы квадратов отклонений левых и правых частей | f i (x) − y i | {\displaystyle |f_{i}(x)-y_{i}|} . Таким образом, сущность МНК может быть выражена следующим образом:

∑ i e i 2 = ∑ i (y i − f i (x)) 2 → min x {\displaystyle \sum _{i}e_{i}^{2}=\sum _{i}(y_{i}-f_{i}(x))^{2}\rightarrow \min _{x}} .

В случае, если система уравнений имеет решение, то минимум суммы квадратов будет равен нулю и могут быть найдены точные решения системы уравнений аналитически или, например, различными численными методами оптимизации. Если система переопределена, то есть, говоря нестрого, количество независимых уравнений больше количества искомых переменных, то система не имеет точного решения и метод наименьших квадратов позволяет найти некоторый «оптимальный» вектор x {\displaystyle x} в смысле максимальной близости векторов y {\displaystyle y} и f (x) {\displaystyle f(x)} или максимальной близости вектора отклонений e {\displaystyle e} к нулю (близость понимается в смысле евклидова расстояния).

Пример - система линейных уравнений

В частности, метод наименьших квадратов может использоваться для «решения» системы линейных уравнений

A x = b {\displaystyle Ax=b} ,

где A {\displaystyle A} прямоугольная матрица размера m × n , m > n {\displaystyle m\times n,m>n} (т.е. число строк матрицы A больше количества искомых переменных).

Такая система уравнений в общем случае не имеет решения. Поэтому эту систему можно «решить» только в смысле выбора такого вектора x {\displaystyle x} , чтобы минимизировать «расстояние» между векторами A x {\displaystyle Ax} и b {\displaystyle b} . Для этого можно применить критерий минимизации суммы квадратов разностей левой и правой частей уравнений системы, то есть (A x − b) T (A x − b) → min {\displaystyle (Ax-b)^{T}(Ax-b)\rightarrow \min } . Нетрудно показать, что решение этой задачи минимизации приводит к решению следующей системы уравнений

A T A x = A T b ⇒ x = (A T A) − 1 A T b {\displaystyle A^{T}Ax=A^{T}b\Rightarrow x=(A^{T}A)^{-1}A^{T}b} .

МНК в регрессионном анализе (аппроксимация данных)

Пусть имеется n {\displaystyle n} значений некоторой переменной y {\displaystyle y} (это могут быть результаты наблюдений, экспериментов и т. д.) и соответствующих переменных x {\displaystyle x} . Задача заключается в том, чтобы взаимосвязь между y {\displaystyle y} и x {\displaystyle x} аппроксимировать некоторой функцией , известной с точностью до некоторых неизвестных параметров b {\displaystyle b} , то есть фактически найти наилучшие значения параметров b {\displaystyle b} , максимально приближающие значения f (x , b) {\displaystyle f(x,b)} к фактическим значениям y {\displaystyle y} . Фактически это сводится к случаю «решения» переопределенной системы уравнений относительно b {\displaystyle b} :

F (x t , b) = y t , t = 1 , … , n {\displaystyle f(x_{t},b)=y_{t},t=1,\ldots ,n} .

В регрессионном анализе и в частности в эконометрике используются вероятностные модели зависимости между переменными

Y t = f (x t , b) + ε t {\displaystyle y_{t}=f(x_{t},b)+\varepsilon _{t}} ,

где ε t {\displaystyle \varepsilon _{t}} - так называемые случайные ошибки модели.

Соответственно, отклонения наблюдаемых значений y {\displaystyle y} от модельных f (x , b) {\displaystyle f(x,b)} предполагается уже в самой модели. Сущность МНК (обычного, классического) заключается в том, чтобы найти такие параметры b {\displaystyle b} , при которых сумма квадратов отклонений (ошибок, для регрессионных моделей их часто называют остатками регрессии) e t {\displaystyle e_{t}} будет минимальной:

b ^ O L S = arg ⁡ min b R S S (b) {\displaystyle {\hat {b}}_{OLS}=\arg \min _{b}RSS(b)} ,

где R S S {\displaystyle RSS} - англ. Residual Sum of Squares определяется как:

R S S (b) = e T e = ∑ t = 1 n e t 2 = ∑ t = 1 n (y t − f (x t , b)) 2 {\displaystyle RSS(b)=e^{T}e=\sum _{t=1}^{n}e_{t}^{2}=\sum _{t=1}^{n}(y_{t}-f(x_{t},b))^{2}} .

В общем случае решение этой задачи может осуществляться численными методами оптимизации (минимизации). В этом случае говорят о нелинейном МНК (NLS или NLLS - англ. Non-Linear Least Squares ). Во многих случаях можно получить аналитическое решение. Для решения задачи минимизации необходимо найти стационарные точки функции R S S (b) {\displaystyle RSS(b)} , продифференцировав её по неизвестным параметрам b {\displaystyle b} , приравняв производные к нулю и решив полученную систему уравнений:

∑ t = 1 n (y t − f (x t , b)) ∂ f (x t , b) ∂ b = 0 {\displaystyle \sum _{t=1}^{n}(y_{t}-f(x_{t},b)){\frac {\partial f(x_{t},b)}{\partial b}}=0} .

МНК в случае линейной регрессии

Пусть регрессионная зависимость является линейной:

y t = ∑ j = 1 k b j x t j + ε = x t T b + ε t {\displaystyle y_{t}=\sum _{j=1}^{k}b_{j}x_{tj}+\varepsilon =x_{t}^{T}b+\varepsilon _{t}} .

Пусть y - вектор-столбец наблюдений объясняемой переменной, а X {\displaystyle X} - это (n × k) {\displaystyle ({n\times k})} -матрица наблюдений факторов (строки матрицы - векторы значений факторов в данном наблюдении, по столбцам - вектор значений данного фактора во всех наблюдениях). Матричное представление линейной модели имеет вид:

y = X b + ε {\displaystyle y=Xb+\varepsilon } .

Тогда вектор оценок объясняемой переменной и вектор остатков регрессии будут равны

y ^ = X b , e = y − y ^ = y − X b {\displaystyle {\hat {y}}=Xb,\quad e=y-{\hat {y}}=y-Xb} .

соответственно сумма квадратов остатков регрессии будет равна

R S S = e T e = (y − X b) T (y − X b) {\displaystyle RSS=e^{T}e=(y-Xb)^{T}(y-Xb)} .

Дифференцируя эту функцию по вектору параметров b {\displaystyle b} и приравняв производные к нулю, получим систему уравнений (в матричной форме):

(X T X) b = X T y {\displaystyle (X^{T}X)b=X^{T}y} .

В расшифрованной матричной форме эта система уравнений выглядит следующим образом:

(∑ x t 1 2 ∑ x t 1 x t 2 ∑ x t 1 x t 3 … ∑ x t 1 x t k ∑ x t 2 x t 1 ∑ x t 2 2 ∑ x t 2 x t 3 … ∑ x t 2 x t k ∑ x t 3 x t 1 ∑ x t 3 x t 2 ∑ x t 3 2 … ∑ x t 3 x t k ⋮ ⋮ ⋮ ⋱ ⋮ ∑ x t k x t 1 ∑ x t k x t 2 ∑ x t k x t 3 … ∑ x t k 2) (b 1 b 2 b 3 ⋮ b k) = (∑ x t 1 y t ∑ x t 2 y t ∑ x t 3 y t ⋮ ∑ x t k y t) , {\displaystyle {\begin{pmatrix}\sum x_{t1}^{2}&\sum x_{t1}x_{t2}&\sum x_{t1}x_{t3}&\ldots &\sum x_{t1}x_{tk}\\\sum x_{t2}x_{t1}&\sum x_{t2}^{2}&\sum x_{t2}x_{t3}&\ldots &\sum x_{t2}x_{tk}\\\sum x_{t3}x_{t1}&\sum x_{t3}x_{t2}&\sum x_{t3}^{2}&\ldots &\sum x_{t3}x_{tk}\\\vdots &\vdots &\vdots &\ddots &\vdots \\\sum x_{tk}x_{t1}&\sum x_{tk}x_{t2}&\sum x_{tk}x_{t3}&\ldots &\sum x_{tk}^{2}\\\end{pmatrix}}{\begin{pmatrix}b_{1}\\b_{2}\\b_{3}\\\vdots \\b_{k}\\\end{pmatrix}}={\begin{pmatrix}\sum x_{t1}y_{t}\\\sum x_{t2}y_{t}\\\sum x_{t3}y_{t}\\\vdots \\\sum x_{tk}y_{t}\\\end{pmatrix}},} где все суммы берутся по всем допустимым значениям t {\displaystyle t} .

Если в модель включена константа (как обычно), то x t 1 = 1 {\displaystyle x_{t1}=1} при всех t {\displaystyle t} , поэтому в левом верхнем углу матрицы системы уравнений находится количество наблюдений n {\displaystyle n} , а в остальных элементах первой строки и первого столбца - просто суммы значений переменных: ∑ x t j {\displaystyle \sum x_{tj}} и первый элемент правой части системы - ∑ y t {\displaystyle \sum y_{t}} .

Решение этой системы уравнений и дает общую формулу МНК-оценок для линейной модели:

b ^ O L S = (X T X) − 1 X T y = (1 n X T X) − 1 1 n X T y = V x − 1 C x y {\displaystyle {\hat {b}}_{OLS}=(X^{T}X)^{-1}X^{T}y=\left({\frac {1}{n}}X^{T}X\right)^{-1}{\frac {1}{n}}X^{T}y=V_{x}^{-1}C_{xy}} .

Для аналитических целей оказывается полезным последнее представление этой формулы (в системе уравнений при делении на n, вместо сумм фигурируют средние арифметические). Если в регрессионной модели данные центрированы , то в этом представлении первая матрица имеет смысл выборочной ковариационной матрицы факторов, а вторая - вектор ковариаций факторов с зависимой переменной. Если кроме того данные ещё и нормированы на СКО (то есть в конечном итоге стандартизированы ), то первая матрица имеет смысл выборочной корреляционной матрицы факторов, второй вектор - вектора выборочных корреляций факторов с зависимой переменной.

Немаловажное свойство МНК-оценок для моделей с константой - линия построенной регрессии проходит через центр тяжести выборочных данных, то есть выполняется равенство:

y ¯ = b 1 ^ + ∑ j = 2 k b ^ j x ¯ j {\displaystyle {\bar {y}}={\hat {b_{1}}}+\sum _{j=2}^{k}{\hat {b}}_{j}{\bar {x}}_{j}} .

В частности, в крайнем случае, когда единственным регрессором является константа, получаем, что МНК-оценка единственного параметра (собственно константы) равна среднему значению объясняемой переменной. То есть среднее арифметическое, известное своими хорошими свойствами из законов больших чисел, также является МНК-оценкой - удовлетворяет критерию минимума суммы квадратов отклонений от неё.

Простейшие частные случаи

В случае парной линейной регрессии y t = a + b x t + ε t {\displaystyle y_{t}=a+bx_{t}+\varepsilon _{t}} , когда оценивается линейная зависимость одной переменной от другой, формулы расчета упрощаются (можно обойтись без матричной алгебры). Система уравнений имеет вид:

(1 x ¯ x ¯ x 2 ¯) (a b) = (y ¯ x y ¯) {\displaystyle {\begin{pmatrix}1&{\bar {x}}\\{\bar {x}}&{\bar {x^{2}}}\\\end{pmatrix}}{\begin{pmatrix}a\\b\\\end{pmatrix}}={\begin{pmatrix}{\bar {y}}\\{\overline {xy}}\\\end{pmatrix}}} .

Отсюда несложно найти оценки коэффициентов:

{ b ^ = Cov ⁡ (x , y) Var ⁡ (x) = x y ¯ − x ¯ y ¯ x 2 ¯ − x ¯ 2 , a ^ = y ¯ − b x ¯ . {\displaystyle {\begin{cases}{\hat {b}}={\frac {\mathop {\textrm {Cov}} (x,y)}{\mathop {\textrm {Var}} (x)}}={\frac {{\overline {xy}}-{\bar {x}}{\bar {y}}}{{\overline {x^{2}}}-{\overline {x}}^{2}}},\\{\hat {a}}={\bar {y}}-b{\bar {x}}.\end{cases}}}

Несмотря на то что в общем случае модели с константой предпочтительней, в некоторых случаях из теоретических соображений известно, что константа a {\displaystyle a} должна быть равна нулю. Например, в физике зависимость между напряжением и силой тока имеет вид U = I ⋅ R {\displaystyle U=I\cdot R} ; замеряя напряжение и силу тока, необходимо оценить сопротивление. В таком случае речь идёт о модели y = b x {\displaystyle y=bx} . В этом случае вместо системы уравнений имеем единственное уравнение

(∑ x t 2) b = ∑ x t y t {\displaystyle \left(\sum x_{t}^{2}\right)b=\sum x_{t}y_{t}} .

Следовательно, формула оценки единственного коэффициента имеет вид

B ^ = ∑ t = 1 n x t y t ∑ t = 1 n x t 2 = x y ¯ x 2 ¯ {\displaystyle {\hat {b}}={\frac {\sum _{t=1}^{n}x_{t}y_{t}}{\sum _{t=1}^{n}x_{t}^{2}}}={\frac {\overline {xy}}{\overline {x^{2}}}}} .

Случай полиномиальной модели

Если данные аппроксимируются полиномиальной функцией регрессии одной переменной f (x) = b 0 + ∑ i = 1 k b i x i {\displaystyle f(x)=b_{0}+\sum \limits _{i=1}^{k}b_{i}x^{i}} , то, воспринимая степени x i {\displaystyle x^{i}} как независимые факторы для каждого i {\displaystyle i} можно оценить параметры модели исходя из общей формулы оценки параметров линейной модели. Для этого в общую формулу достаточно учесть, что при такой интерпретации x t i x t j = x t i x t j = x t i + j {\displaystyle x_{ti}x_{tj}=x_{t}^{i}x_{t}^{j}=x_{t}^{i+j}} и x t j y t = x t j y t {\displaystyle x_{tj}y_{t}=x_{t}^{j}y_{t}} . Следовательно, матричные уравнения в данном случае примут вид:

(n ∑ n x t … ∑ n x t k ∑ n x t ∑ n x i 2 … ∑ m x i k + 1 ⋮ ⋮ ⋱ ⋮ ∑ n x t k ∑ n x t k + 1 … ∑ n x t 2 k) [ b 0 b 1 ⋮ b k ] = [ ∑ n y t ∑ n x t y t ⋮ ∑ n x t k y t ] . {\displaystyle {\begin{pmatrix}n&\sum \limits _{n}x_{t}&\ldots &\sum \limits _{n}x_{t}^{k}\\\sum \limits _{n}x_{t}&\sum \limits _{n}x_{i}^{2}&\ldots &\sum \limits _{m}x_{i}^{k+1}\\\vdots &\vdots &\ddots &\vdots \\\sum \limits _{n}x_{t}^{k}&\sum \limits _{n}x_{t}^{k+1}&\ldots &\sum \limits _{n}x_{t}^{2k}\end{pmatrix}}{\begin{bmatrix}b_{0}\\b_{1}\\\vdots \\b_{k}\end{bmatrix}}={\begin{bmatrix}\sum \limits _{n}y_{t}\\\sum \limits _{n}x_{t}y_{t}\\\vdots \\\sum \limits _{n}x_{t}^{k}y_{t}\end{bmatrix}}.}

Статистические свойства МНК-оценок

В первую очередь, отметим, что для линейных моделей МНК-оценки являются линейными оценками, как это следует из вышеприведённой формулы. Для несмещенности МНК-оценок необходимо и достаточно выполнения важнейшего условия регрессионного анализа : условное по факторам математическое ожидание случайной ошибки должно быть равно нулю. Данное условие, в частности, выполнено, если

  1. математическое ожидание случайных ошибок равно нулю, и
  2. факторы и случайные ошибки - независимые случайные величины .

Второе условие - условие экзогенности факторов - принципиальное. Если это свойство не выполнено, то можно считать, что практически любые оценки будут крайне неудовлетворительными: они не будут даже состоятельными (то есть даже очень большой объём данных не позволяет получить качественные оценки в этом случае). В классическом случае делается более сильное предположение о детерминированности факторов, в отличие от случайной ошибки, что автоматически означает выполнение условия экзогенности. В общем случае для состоятельности оценок достаточно выполнения условия экзогенности вместе со сходимостью матрицы V x {\displaystyle V_{x}} к некоторой невырожденной матрице при увеличении объёма выборки до бесконечности.

Для того, чтобы кроме состоятельности и несмещенности , оценки (обычного) МНК были ещё и эффективными (наилучшими в классе линейных несмещенных оценок) необходимо выполнение дополнительных свойств случайной ошибки:

Данные предположения можно сформулировать для ковариационной матрицы вектора случайных ошибок V (ε) = σ 2 I {\displaystyle V(\varepsilon)=\sigma ^{2}I} .

Линейная модель, удовлетворяющая таким условиям, называется классической . МНК-оценки для классической линейной регрессии являются несмещёнными , состоятельными и наиболее эффективными оценками в классе всех линейных несмещённых оценок (в англоязычной литературе иногда употребляют аббревиатуру BLUE (Best Linear Unbiased Estimator ) - наилучшая линейная несмещённая оценка; в отечественной литературе чаще приводится теорема Гаусса - Маркова). Как нетрудно показать, ковариационная матрица вектора оценок коэффициентов будет равна:

V (b ^ O L S) = σ 2 (X T X) − 1 {\displaystyle V({\hat {b}}_{OLS})=\sigma ^{2}(X^{T}X)^{-1}} .

Эффективность означает, что эта ковариационная матрица является «минимальной» (любая линейная комбинация коэффициентов, и в частности сами коэффициенты, имеют минимальную дисперсию), то есть в классе линейных несмещенных оценок оценки МНК-наилучшие. Диагональные элементы этой матрицы - дисперсии оценок коэффициентов - важные параметры качества полученных оценок. Однако рассчитать ковариационную матрицу невозможно, поскольку дисперсия случайных ошибок неизвестна. Можно доказать, что несмещённой и состоятельной (для классической линейной модели) оценкой дисперсии случайных ошибок является величина:

S 2 = R S S / (n − k) {\displaystyle s^{2}=RSS/(n-k)} .

Подставив данное значение в формулу для ковариационной матрицы и получим оценку ковариационной матрицы. Полученные оценки также являются несмещёнными и состоятельными . Важно также то, что оценка дисперсии ошибок (а значит и дисперсий коэффициентов) и оценки параметров модели являются независимыми случайными величинами, что позволяет получить тестовые статистики для проверки гипотез о коэффициентах модели.

Необходимо отметить, что если классические предположения не выполнены, МНК-оценки параметров не являются наиболее эффективными и, где W {\displaystyle W} - некоторая симметрическая положительно определенная весовая матрица. Обычный МНК является частным случаем данного подхода, когда весовая матрица пропорциональна единичной матрице. Как известно, для симметрических матриц (или операторов) существует разложение W = P T P {\displaystyle W=P^{T}P} . Следовательно, указанный функционал можно представить следующим образом e T P T P e = (P e) T P e = e ∗ T e ∗ {\displaystyle e^{T}P^{T}Pe=(Pe)^{T}Pe=e_{*}^{T}e_{*}} , то есть этот функционал можно представить как сумму квадратов некоторых преобразованных «остатков». Таким образом, можно выделить класс методов наименьших квадратов - LS-методы (Least Squares).

Доказано (теорема Айткена), что для обобщенной линейной регрессионной модели (в которой на ковариационную матрицу случайных ошибок не налагается никаких ограничений) наиболее эффективными (в классе линейных несмещенных оценок) являются оценки т. н. обобщенного МНК (ОМНК, GLS - Generalized Least Squares) - LS-метода с весовой матрицей, равной обратной ковариационной матрице случайных ошибок: W = V ε − 1 {\displaystyle W=V_{\varepsilon }^{-1}} .

Можно показать, что формула ОМНК-оценок параметров линейной модели имеет вид

B ^ G L S = (X T V − 1 X) − 1 X T V − 1 y {\displaystyle {\hat {b}}_{GLS}=(X^{T}V^{-1}X)^{-1}X^{T}V^{-1}y} .

Ковариационная матрица этих оценок соответственно будет равна

V (b ^ G L S) = (X T V − 1 X) − 1 {\displaystyle V({\hat {b}}_{GLS})=(X^{T}V^{-1}X)^{-1}} .

Фактически сущность ОМНК заключается в определенном (линейном) преобразовании (P) исходных данных и применении обычного МНК к преобразованным данным. Цель этого преобразования - для преобразованных данных случайные ошибки уже удовлетворяют классическим предположениям.

Взвешенный МНК

В случае диагональной весовой матрицы (а значит и ковариационной матрицы случайных ошибок) имеем так называемый взвешенный МНК (WLS - Weighted Least Squares). В данном случае минимизируется взвешенная сумма квадратов остатков модели, то есть каждое наблюдение получает «вес», обратно пропорциональный дисперсии случайной ошибки в данном наблюдении: e T W e = ∑ t = 1 n e t 2 σ t 2 {\displaystyle e^{T}We=\sum _{t=1}^{n}{\frac {e_{t}^{2}}{\sigma _{t}^{2}}}} . Фактически данные преобразуются взвешиванием наблюдений (делением на величину, пропорциональную предполагаемому стандартному отклонению случайных ошибок), а к взвешенным данным применяется обычный МНК.

ISBN 978-5-7749-0473-0 .

  • Эконометрика. Учебник / Под ред. Елисеевой И. И. - 2-е изд. - М. : Финансы и статистика, 2006. - 576 с. - ISBN 5-279-02786-3 .
  • Александрова Н. В. История математических терминов, понятий, обозначений: словарь-справочник. - 3-е изд.. - М. : ЛКИ, 2008. - 248 с. - ISBN 978-5-382-00839-4 . И.В Митин, Русаков В.С. Анализ и обработка экспериментальных данных- 5-е издание- 24с.
  • Аппроксимация опытных данных – это метод, основанный на замене экспериментально полученных данных аналитической функцией наиболее близко проходящей или совпадающей в узловых точках с исходными значениями (данными полученными в ходе опыта или эксперимента). В настоящее время существует два способа определения аналитической функции:

    С помощью построения интерполяционного многочлена n-степени, который проходит непосредственно через все точки заданного массива данных. В данном случае аппроксимирующая функция представляется в виде: интерполяционного многочлена в форме Лагранжа или интерполяционного многочлена в форме Ньютона.

    С помощью построения аппроксимирующего многочлена n-степени, который проходит в ближайшей близости от точек из заданного массива данных. Таким образом, аппроксимирующая функция сглаживает все случайные помехи (или погрешности), которые могут возникать при выполнении эксперимента: измеряемые значения в ходе опыта зависят от случайных факторов, которые колеблются по своим собственным случайным законам (погрешности измерений или приборов, неточность или ошибки опыта). В данном случае аппроксимирующая функция определяется по методу наименьших квадратов.

    Метод наименьших квадратов (в англоязычной литературе Ordinary Least Squares, OLS) - математический метод, основанный на определении аппроксимирующей функции, которая строится в ближайшей близости от точек из заданного массива экспериментальных данных. Близость исходной и аппроксимирующей функции F(x) определяется числовой мерой, а именно: сумма квадратов отклонений экспериментальных данных от аппроксимирующей кривой F(x) должна быть наименьшей.

    Аппроксимирующая кривая, построенная по методу наименьших квадратов

    Метод наименьших квадратов используется:

    Для решения переопределенных систем уравнений, когда количество уравнений превышает количество неизвестных;

    Для поиска решения в случае обычных (не переопределенных) нелинейных систем уравнений;

    Для аппроксимации точечных значений некоторой аппроксимирующей функцией.

    Аппроксимирующая функция по методу наименьших квадратов определяется из условия минимума суммы квадратов отклонений расчетной аппроксимирующей функции от заданного массива экспериментальных данных. Данный критерий метода наименьших квадратов записывается в виде следующего выражения:

    Значения расчетной аппроксимирующей функции в узловых точках ,

    Заданный массив экспериментальных данных в узловых точках .

    Квадратичный критерий обладает рядом "хороших" свойств, таких, как дифференцируемость, обеспечение единственного решения задачи аппроксимации при полиномиальных аппроксимирующих функциях.

    В зависимости от условий задачи аппроксимирующая функция представляет собой многочлен степени m

    Степень аппроксимирующей функции не зависит от числа узловых точек, но ее размерность должна быть всегда меньше размерности (количества точек) заданного массива экспериментальных данных.

    ∙ В случае если степень аппроксимирующей функции m=1, то мы аппроксимируем табличную функцию прямой линией (линейная регрессия).

    ∙ В случае если степень аппроксимирующей функции m=2, то мы аппроксимируем табличную функцию квадратичной параболой (квадратичная аппроксимация).

    ∙ В случае если степень аппроксимирующей функции m=3, то мы аппроксимируем табличную функцию кубической параболой (кубическая аппроксимация).

    В общем случае, когда требуется построить аппроксимирующий многочлен степени m для заданных табличных значений, условие минимума суммы квадратов отклонений по всем узловым точкам переписывается в следующем виде:

    - неизвестные коэффициенты аппроксимирующего многочлена степени m;

    Количество заданных табличных значений.

    Необходимым условием существования минимума функции является равенству нулю ее частных производных по неизвестным переменным . В результате получим следующую систему уравнений:

    Преобразуем полученную линейную систему уравнений: раскроем скобки и перенесем свободные слагаемые в правую часть выражения. В результате полученная система линейных алгебраических выражений будет записываться в следующем виде:

    Данная система линейных алгебраических выражений может быть переписана в матричном виде:

    В результате была получена система линейных уравнений размерностью m+1, которая состоит из m+1 неизвестных. Данная система может быть решена с помощью любого метода решения линейных алгебраических уравнений (например, методом Гаусса). В результате решения будут найдены неизвестные параметры аппроксимирующей функции, обеспечивающие минимальную сумму квадратов отклонений аппроксимирующей функции от исходных данных, т.е. наилучшее возможное квадратичное приближение. Следует помнить, что при изменении даже одного значения исходных данных все коэффициенты изменят свои значения, так как они полностью определяются исходными данными.

    Аппроксимация исходных данных линейной зависимостью

    (линейная регрессия)

    В качестве примера, рассмотрим методику определения аппроксимирующей функции, которая задана в виде линейной зависимости. В соответствии с методом наименьших квадратов условие минимума суммы квадратов отклонений записывается в следующем виде:

    Координаты узловых точек таблицы;

    Неизвестные коэффициенты аппроксимирующей функции, которая задана в виде линейной зависимости.

    Необходимым условием существования минимума функции является равенству нулю ее частных производных по неизвестным переменным. В результате получаем следующую систему уравнений:

    Преобразуем полученную линейную систему уравнений.

    Решаем полученную систему линейных уравнений. Коэффициенты аппроксимирующей функции в аналитическом виде определяются следующим образом (метод Крамера):

    Данные коэффициенты обеспечивают построение линейной аппроксимирующей функции в соответствии с критерием минимизации суммы квадратов аппроксимирующей функции от заданных табличных значений (экспериментальные данные).

    Алгоритм реализации метода наименьших квадратов

    1. Начальные данные:

    Задан массив экспериментальных данных с количеством измерений N

    Задана степень аппроксимирующего многочлена (m)

    2. Алгоритм вычисления:

    2.1. Определяются коэффициенты для построения системы уравнений размерностью

    Коэффициенты системы уравнений (левая часть уравнения)

    - индекс номера столбца квадратной матрицы системы уравнений

    Свободные члены системы линейных уравнений (правая часть уравнения)

    - индекс номера строки квадратной матрицы системы уравнений

    2.2. Формирование системы линейных уравнений размерностью .

    2.3. Решение системы линейных уравнений с целью определения неизвестных коэффициентов аппроксимирующего многочлена степени m.

    2.4.Определение суммы квадратов отклонений аппроксимирующего многочлена от исходных значений по всем узловым точкам

    Найденное значение суммы квадратов отклонений является минимально-возможным.

    Аппроксимация с помощью других функций

    Следует отметить, что при аппроксимации исходных данных в соответствии с методом наименьших квадратов в качестве аппроксимирующей функции иногда используют логарифмическую функцию, экспоненциальную функцию и степенную функцию.

    Логарифмическая аппроксимация

    Рассмотрим случай, когда аппроксимирующая функция задана логарифмической функцией вида: